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Abstract—Graph convolutional networks (GCNs) are a widely
used method for graph representation learning. To elucidate the
capabilities and limitations of GCNs, we investigate their power,
as a function of their number of layers, to distinguish between
different random graph models (corresponding to different class-
conditional distributions in a classification problem) on the basis
of the embeddings of their sample graphs. In particular, the graph
models that we consider arise from graphons, which are the
most general possible parameterizations of infinite exchangeable
graph models and which are the central objects of study in the
theory of dense graph limits. We give a precise characterization
of the set of pairs of graphons that are indistinguishable by a
GCN with nonlinear activation functions coming from a certain
broad class if its depth is at least logarithmic in the size of
the sample graph. This characterization is in terms of a degree
profile closeness property. Outside this class, a very simple GCN
architecture suffices for distinguishability. We then exhibit a
concrete, infinite class of graphons arising from stochastic block
models that are well-separated in terms of cut distance and are
indistinguishable by a GCN. These results theoretically match
empirical observations of several prior works on GCNs. To prove
our results, we exploit a connection to random walks on graphs.

I. INTRODUCTION

In applications ranging from drug discovery [1] and design
to proteomics [2] to neuroscience [3] to social network anal-
ysis [4], inputs to machine learning methods take the form
of graphs. In order to leverage the empirical success of deep
learning and other methods that work on vectors in finite-
dimensional Euclidean spaces for supervised learning tasks
in this domain, a plethora of graph representation learning
schemes have been proposed and used [5]. One particularly
effective such method is the graph convolutional network
(GCN) architecture [6], [7]. A graph convolutional network
works by associating with each node of an input graph a vector
of features and passing these node features through a sequence
of layers, resulting in a final set of node vectors, called
node embeddings. To generate a vector representing the entire
graph, these final embeddings are sometimes averaged. Each
layer of the network consists of a graph diffusion step, where
a node’s feature vector is averaged with those of its neighbors;
a feature transformation step, where each node’s vector is
transformed by a weight matrix; and, finally, application of
an elementwise nonlinearity such as the ReLU or sigmoid
function. The weight matrices are trained from data, so that the

metric structure of the resulting embeddings are (one hopes)
tailored to a particular classification task.

While GCNs and other graph representation learning meth-
ods have been successful in practice, numerous theoretical
questions about their capabilities and the roles of their hyper-
parameters remain unexplored. In this paper, we give results
on the ability of GCNs to distinguish between samples from
different random graph models. We focus on the roles that the
number of layers and the presence or absence of nonlinearity
play. The random graph models that we consider are those that
are parameterized by graphons [8], which are functions from
the unit square to the interval [0, 1] that essentially encode
edge density among a continuum of vertices. Graphons are
the central objects of study in the theory of dense graph limits
and, by the Aldous-Hoover theorem [9] exactly parameterize
the class of infinite exchangeable random graph models –
those models whose samples are invariant in distribution under
permutation of vertices.

A. Prior Work

A survey of modern graph representation learning methods
is provided in [5]. Graph convolutional networks were first
introduced in [7], and since then, many variants have been
proposed. For instance, the polynomial convolutional filters in
the original work were replaced by linear convolutions [6]. Au-
thors in [10] modified the original architecture to include gated
recurrent units for working with dynamical graphs. These
and other variants have been used in various applications,
e.g., [11], [12], [13], [14].

Theoretical work on GCNs has been from a variety of
perspectives. In [15], the authors investigated the general-
ization and stability properties of GCNs. Several works, in-
cluding [16], [17], [18], have drawn connections between the
representation capabilities of GCNs and the distinguishing
ability of the Weisfeiler-Lehman (WL) algorithm for graph
isomorphism testing [19]. These papers drawing comparisons
to the WL algorithm implicitly study the injectivity properties
of the mapping from graphs to vectors induced by GCNs.
However, they do not address the metric/analytic properties,
which are important in consideration of their performance
as representation learning methods [20]. Finally, at least one
work has considered the performance of untrained GCNs on
community detection [21]. The authors of that paper provide



a heuristic calculation based on the mean-field approximation
from statistical physics and demonstrate through numerical
experiments the ability of untrained GCNs to detect the
presence of clusters and to recover the ground truth community
assignments of vertices in the stochastic block model. They
empirically show that the regime of graph model parameters in
which an untrained GCN is successful at this task agrees well
with the analytically derived detection threshold. The authors
also conjecture that training GCNs does not significantly affect
their community detection performance.

The theory of graphons as limits of dense graph sequences
was initiated in [22] and developed by various authors [23],
[24]. For a comprehensive treatment, see [8].

Several authors have investigated the problem of estimation
of graphons from samples [25], [26], [27]. Our work is
complementary to these, as our goal is to investigate the perfor-
mance of a particular method on the problem of distinguishing
graphons.

B. Our Contributions

We first establish a convergence result for GCN embedding
vectors, which will give a lower bound on the probability
of error of any test that attempts to distinguish between
two graphons based on slightly perturbed K-layer GCN em-
bedding matrices of sample graphs of size n, provided that
K = Ω(log n). In particular, we exhibit a family of pairs of
graphons that are hard for any test to distinguish on the basis
of these embeddings. This is the content of Theorems 1 and
2.

We then show a converse achievability result in Theorem 3
that says, roughly, that provided that the number of layers
is sufficiently large (K = Ω(log n)), there exists a linear
GCN architecture with a very simple sequence of weight
matrices and a choice of initial embedding matrix such that
pairs of graphons whose expected degree statistics differ by a
sufficiently large amount are distinguishable from the noise-
perturbed GCN embeddings of their sample graphs. In other
words, this indicates that the family of difficult-to-distinguish
graphons alluded to above is essentially the only sort of case
in which a nonlinear GCN architecture could be necessary
(though, as Theorem 2 shows, for several choices of activation
functions, these graphons are still indistinguishable).

Our proofs rely on concentration of measure results and
techniques from the theory of Markov chain mixing times and
spectral graph theory [28].

1) Relations between probability of error lower and upper
bounds: Our probability of error lower bounds give the-
oretical backing to a phenomenon that has been observed
empirically in graph classification problems: adding arbitrarily
many layers (more than Θ(log n)) to a GCN can substantially
degrade classification performance. This is an implication of
Theorem 2. On the other hand, Theorem 3 shows that this
is not always the case, and that for many pairs of graphons,
adding more layers improves classification performance. We
suspect that the set of pairs of graphons for which adding
arbitrarily many layers does not help forms a set of measure

0, though this does not imply that such examples never arise
in practice.

The factor that determines whether or not adding layers will
improve or degrade performance of a GCN in distinguishing
between two graphons W0 and W1 is the distance between
the stationary distributions of the random walks on the sample
graphs from W0 and W1. This, in turn, is determined by the
normalized degree profiles of the sample graphs.

An extended version of this paper is available on
ArXiv [29].

II. NOTATION AND MODEL

A. Graph Convolutional Networks

We start by defining the model and relevant notation. A
K-layer graph convolutional network (GCN) is a function
mapping graphs to vectors over R. It is parameterized by
a sequence of K weight matrices W (j) ∈ Rd×d, j ∈
{0, ...,K − 1}, where d ∈ N is the embedding dimension, a
hyperparameter. From an input graph G with adjacency matrix
A and random walk matrix Â (i.e., Â is A with every row
normalized by the sum of its entries), and starting with an
initial embedding matrix M̂ (0), the `th embedding matrix is
defined as follows:

M̂ (`) = σ(Â · M̂ (`−1) ·W (`−1)), (1)

where σ : R → R is a fixed nonlinear activation function
and is applied element-wise to an input matrix. An embedding
vector Ĥ(`) ∈ R1×d is then produced by averaging the rows
of M̂ (`):

Ĥ(`) =
1

n
· 1T M̂ (`). (2)

Typical examples of activation functions in neural network
and GCN contexts include the ReLU, sigmoid, and hyperbolic
tangent functions. Empirical work has given evidence that
the performance of GCNs on certain classification tasks is
unaffected by replacing nonlinear activation functions by the
identity [30]. Our results lend theoretical credence to this.

Frequently, Â is replaced by either the normalized adjacency
matrix D−1/2AD−1/2, where D is a diagonal matrix with the
degrees of the vertices of the graph on the diagonal, or some
variant of the Laplacian matrix D−A. For simplicity, we will
consider in this paper only the choice of Â.

The defining equation (1) has the following interpretation:
multiplication on the left by Â has the effect of replacing
each node’s embedding vector with the average of those
of its neighbors. Multiplication on the right by the weight
matrix W (`−1) has the effect of replacing each coordinate
(corresponding to a feature) of each given node embedding
vector with a linear combination of values of the node’s
features in the previous layer.

B. Graphons

In order to probe the ability of GCNs to distinguish ran-
dom graph models from samples, we consider the task of
distinguishing random graph models induced by graphons.



A graphon W is a symmetric, Lebesgue-measurable function
from [0, 1]2 → [0, 1]. To each graphon is associated a natural
exchangeable random graph model as follows: to generate a
graph on n vertices, one chooses n points x1, ..., xn uniformly
at random from [0, 1]. An edge between vertices i, j is inde-
pendent of all other edge events and is present with probability
W (xi, xj). We use the notation G ∼ W to denote that G is
a random sample graph from the model induced by W . The
number of vertices will be clear from context.

One commonly studied class of models that may be defined
equivalently in terms of sampling from graphons is the class
of stochastic block models. A stochastic block model on n
vertices with two blocks is parameterized by four quantities:
k1, p1, p2, q. The two blocks of vertices have sizes k1n and
k2n = (1 − k1)n, respectively. Edges between two vertices
v, w in block i, i ∈ {1, 2}, appear with probability pi,
independently of all other edges. Edges between vertices v
in block 1 and w in block 2 appear independently with
probability q. We will write this model as SBM(p1, p2, q),
suppressing k1.

An important metric on graphons is the cut distance [31].
It is induced by the cut norm, which is defined as follows: fix
a graphon W . Then

‖W‖cut = sup
S,T

∣∣∣∣∫
S×T

W (x, y) dµ(x) dµ(y)

∣∣∣∣ , (3)

where the supremum is taken over all measurable subsets of
[0, 1], and the integral is taken with respect to the Lebesgue
measure. For finite graphs, this translates to taking the pair
of subsets S, T of vertices that has the maximum between-
subset edge density. The cut distance dcut(W0,W1) between
graphons W0,W1 is then defined as

dcut(W0,W1) = inf
φ
‖W0 −W1(φ(·), φ(·))‖cut, (4)

where the infimum is taken over all measure-preserving bijec-
tions of [0, 1]. In the case of finite graphs, this intuitively trans-
lates to ignoring vertex labelings. The cut distance generates
the same topology on the space of graphons as convergence
of subgraph homomorphism densities (i.e., left convergence),
and so it is an important part of the theory of graph limits.

C. Main Hypothesis Testing Problem

We may now state the hypothesis testing problem un-
der consideration. Fix two graphons W0,W1. A coin B ∼
Bernoulli(1/2) is flipped, and then a graph G ∼ WB on n
vertices is sampled. Next, G is passed through K = K(n)
layers of a GCN, resulting in a matrix M̂ (K) ∈ Rn×d whose
rows are node embedding vectors. The graph embedding
vector Ĥ(K) is then defined to be 1

n1
T M̂ (K). As a final step,

the embedding vector is perturbed in each entry by adding
an independent, uniformly random number in the interval
[−εres, εres], for a parameter εres > 0 that may depend on n,
which we will typically consider to be Θ(1/n). This results
in a vector H(K). We note that this perturbation step has
precedent in the context of studies on the performance of
neural networks in the presence of numerical imprecision [32].

For our purposes, it will allow us to translate convergence
results to information theoretic lower bounds.

Our goal is to study the effect of the number of layers K
and presence or absence of nonlinearities on the representation
properties of GCNs and probability of error of optimal tests
Ψ(H(K)) that are meant to estimate B. Throughout, we will
consider the case where d = n. We will frequently use two
particular norms: the `∞ norm for vectors and matrices, which
is the maximum absolute entry; and the operator norm induced
by `∞ for matrices: for a matrix M ,

‖M‖op,∞ = sup
v : ‖v‖∞=1

‖Mv‖∞. (5)

III. MAIN RESULTS

To state our results, we need a few definitions. For a graphon
W , we define the degree function dW : [0, 1]→ R to be

dW (x) =

∫ 1

0

W (x, y) dy, (6)

and define the total degree function

D(W ) =

∫ 1

0

∫ 1

0

W (x, y) dx dy. (7)

We will assume in what follows that all graphons W have the
property that there is some ` > 0 for which W (x, y) ≥ ` for
all x, y ∈ [0, 1].

For any δ ≥ 0, we say that two graphons W0,W1 are a
δ-exceptional pair if∫ 1

0

∣∣∣∣dW0(φ(x))

D(W0)
− dW1(x)

D(W1)

∣∣∣∣ dx ≤ δ, (8)

for some measure-preserving bijection φ : [0, 1]→ [0, 1]. If a
pair of graphons is not δ-exceptional, then we say that they
are δ-separated.

We define the following class of activation functions:

Definition 1 (Nice activation functions). We define A to be
the class of activation functions σ : R → R satisfying the
following conditions:
• σ ∈ C2.
• σ(0) = 0, σ′(0) = 1 and σ′(x) ≤ 1 for all x.

For simplicity, in Theorems 1 and 2 below, we will consider
activations in the above class; however, some of the conditions
may be relaxed without inducing changes to our results: in
particular, we may remove the requirement that σ′(0) = 1,
and we may relax σ′(x) ≤ 1 for all x to only hold for x in
some constant-length interval around 0. This expanded class
includes activation functions such as σ(x) = tanh(x) and the
swish and SELU functions:
• swish [33]: σ(x) = x

1+e−x

• SELU [34]: σ(x) = I[x ≤ 0](ex − 1) + I[x > 0]x.
We also make the following stipulation about the parameters

of the GCN: the initial embedding matrices M̂ (b,0) (with b ∈
{0, 1}) and weight matrices {W (j)}Kj=0 satisfy∥∥∥M (b,0)T

∥∥∥
op,∞

·
K∏
j=0

‖W (j)T ‖op,∞ ≤ C, (9)



and
∑K
j=0 ‖W (j)T ‖op,∞ ≤ E, for some fixed positive con-

stants C and E.

Theorem 1 (Convergence of embedding vectors for a large
class of graphons and for a family of nonlinear activations).
Let W0,W1 denote two δ-exceptional graphons, for some fixed
δ ≥ 0.

Let K satisfy D log n < K, for some large enough constant
D > 0 that is a function of W0 and W1. Consider the GCN
with K layers and output embedding matrix M̂ (K), with the
additional properties stated before the theorem.

Suppose that δ > 0. Then there exists a coupling (alterna-
tively, a relabeling and an arbitrary coupling) of the graphs
G(0) ∼ W0, G

(1) ∼ W1, as n→∞ such that the embedding
vectors Ĥ(0,K) and Ĥ(1,K) satisfy

‖Ĥ(0,K) − Ĥ(1,K)‖∞ ≤
δ

n
(1 +O(1/

√
n)) (10)

with high probability.
If δ = 0, then we have

‖Ĥ(0,K) − Ĥ(1,K)‖∞ ≤ O(n−3/2+const), (11)

and for a 1 − o(1)-fraction of coordinates i, |Ĥ(0,K)
i −

Ĥ
(1,K)
i | = O(1/n2).

Remark 1. We stress that the above convergence bounds are
for the unperturbed GCN embedding vectors.

Remark 2. The convergence bounds (10) and (11) should be
interpreted in light of the fact that the embedding vectors have
entries on the order of Θ(1/n).

Theorem 1 can be translated, with some effort, to the
following result.

Theorem 2 (Probability of error lower bound). Consider
again the setting of Theorem 1. Furthermore, suppose that
εres >

δ
2n . Let K additionally satisfy K � n1/2−ε0 , for an

arbitrarily small fixed ε0 > 0. Then there exist two sequences
{G0,n}∞n=1, {G1,n}∞n=1 of random graph models such that
• with probability 1, samples Gb,n ∼ Gb,n converge in cut

distance to Wb,
• When δ > 0, the probability of error of any test in

distinguishing between W0 and W1 based on H(b,K),
the εres-uniform perturbation of Ĥ(b,K), is at least(

1− δ

2εresn

)n
(12)

When δ = 0, the probability of error lower bound
becomes

exp

(
− const
εres · n

)
. (13)

Remark 3. When εres = Θ(1/n) and δ = Ω(1), the error
probability lower bound (12) is exponentially decaying to 0.
On the other hand, when εres � 1/n and δ = Ω(1), it
becomes exp

(
− δ

2εres

)
(1 + o(1)), which is Θ(1).

When δ = 0 and εres = Ω(1/n), the probability of error
lower bound in (13) is Ω(1).

We next turn to a positive result demonstrating the distin-
guishing capabilities of very simple, linear GCNs.

Theorem 3 (Distinguishability result). Let W0,W1 denote
two δ-separated graphons. Then there exists a test that dis-
tinguishes with probability 1−o(1) between samples G ∼W0

and G ∼ W1 based on the εres-perturbed embedding vec-
tor from a GCN with K layers, identity initial and weight
matrices, and ReLU activation functions, provided that K >
D log n for a sufficiently large D and that εres ≤ δ

2n .

The convergence rate of the probability in the above theorem
is available in the full version of this paper.

Finally, we exhibit a family of stochastic block models that
are difficult to distinguish and are such that infinitely many
pairs of them have large cut distance.

To define the family of models, we consider the fol-
lowing density parameter set: we pick a base point P∗ =
(p∗,1, p∗,2, q∗) with all positive numbers and then define

P

=

{
P : (0, 0, 0) ≺ P = P∗ + τ · ( 1

k1
,
k1

k2
2

,
−1

k2
) � (1, 1, 1)

}
,

where � is the lexicographic partial order, and τ ∈ R. We
have defined this parameter family because the corresponding
SBMs all have equal expected degree sequences.

It may be checked that δ in Theorems 1 and 2 is 0 for pairs
of graphons from P . This gives the following result.

Theorem 4. For any pair W0,W1 from the family of stochastic
block models parameterized by P , there exists a K > D log n,
for some large enough positive constant D, such that the
following statements hold:

a) Convergence of embedding vectors: There is a cou-
pling (alternatively, there is a relabeling and an arbitrary
coupling) of the graphs G(0) ∼ W0 and G(1) ∼ W1 such
that, as n → ∞, the embedding vectors Ĥ(0,K) and Ĥ(1,K)

satisfy

‖Ĥ(0,K) − Ĥ(1,K)‖∞ = O(n−3/2+const) (14)

with probability 1− e−Θ(n).
b) Probability of error lower bound: Let K additionally

satisfy K � n1/2−ε0 , for an arbitrary small fixed ε0 > 0. Then
there exist two sequences {G0,n}∞n=1, {G1,n}∞n=1 of random
graph models such that
• with probability 1, samples Gb,n ∼ Gb,n converge in cut

distance to Wb,
• the probability of error of any test in distinguishing be-

tween W0 and W1 based on H(b,K), the εres-uniform per-
turbation of Ĥ(b,K), is lower bounded by exp

(
− C
εresn

)
.

IV. CONCLUSIONS AND FUTURE WORK

We have shown conditions under which GCNs are
information-theoretically capable/incapable of distinguishing
between sufficiently well-separated graphons.

It is worthwhile to discuss what lies ahead for the theory
of graph representation learning in relation to the problem of



distinguishing distributions on graphs. As the present paper is a
first step, we have left several directions for future exploration.
Most immediately, although we have proven impossibility
results for GCNs with nonlinear activation functions, we lack a
complete understanding of the benefits of more general ways
of incorporating nonlinearity. We have shown that architec-
tures with too many layers cannot be used to distinguish
between graphons coming from a certain exceptional class.
It would be of interest to determine if more general ways of
incorporating nonlinearity are able to generically distinguish
between any sufficiently well-separated pair of graphons,
whether or not they come from the exceptional class. To
this end, we are exploring results indicating that replacing
the random walk matrix Â in the GCN architecture with the
transition matrix of a related Markov chain with the same
graph structure as the input graph G results in a linear GCN
that is capable of distinguishing graphons generically.

Furthermore, a clear understanding of the role played by
the embedding dimension would be of interest. In particular,
we suspect that decreasing the embedding dimension results in
worse graphon discrimination performance. Moreover, a more
precise understanding of how performance parameters scale
with the embedding dimension would be valuable in GCN
design.

Additionally, different noise models may be important in
practice: for instance, one may consider perturbation of the
sample graphs or adversarial (but bounded) perturbation of
the output embedding vectors.

Finally, we note that in many application domains, graphs
are typically sparse. Thus, we intend to generalize our theory
to the sparse graph setting by replacing graphons, which
inherently generate dense graphs, with suitable nonparametric
sparse graph models, e.g., graphexes.
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