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Abstract— An electrical power transmission system can be
represented as a network with nodes and links representing
buses and impedance between the buses, respectively. Decom-
posing a large interconnected power network into smaller
loosely-coupled groups facilitates easy and flexible management
of the power transmission systems by allowing secondary
voltage control at regional levels and controlled islanding that
aims to prevent the spreading of large-area blackouts. In
this paper, we address the problem of clustering a power
network into prespecified number of zones that are weakly
coupled electrically by using an information-theoretic clustering
algorithm. A notion of electrical similarity between electrical
buses is developed, where any two buses are considered similar,
if reactive perturbations at these buses have a similar effect on
the entire network. A thorough theoretical justification of the
use of the proposed clustering approach is provided along with
the results of our methodology for IEEE test systems.

I. INTRODUCTION

The North American electrical grid is regarded as the
most significant engineering achievement of the 20th century
[1], and yet the modern power transmission system faces
major challenges due to ever increasing complex intercon-
nections among multiple elements in the grid. Existence
of strong links between underlying topological structure
and performance in electrical networks have motivated for
better strategies for managing and mitigating risks related to
network failures. Decomposing a large interconnected power
network into smaller loosely-coupled groups facilitates easy
and flexible management of the power transmission systems
by allowing secondary voltage control at regional levels [2],
controlled islanding that aims to prevent the spreading of
large-area blackouts, and making the network robust to power
and load fluctuations [3].

In this context, it is required to develop interpretable
classifications of a given power network. More specifically,
the aim of this project is to identify mutually decoupled
(or loosely coupled) clusters (or zones) in a network such
that in any unforeseen event of blackout or catastrophic
failure, it is possible to control the spread of power outage
and simultaneously identify the nodes that are most affected
by the failure. In fact, we propose a clustering metric and
approach such that any given node in a network is tightly
coupled to the nodes within its cluster, while bearing loose
coupling with nodes in other clusters. Thus the proposed
approach reveals the underlying topological structure in
the network by decomposing the large network into small
number of tractable sub-networks.
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Several recent works have looked at the problem of
partitioning of electrical networks using varied approaches.
From an abstract viewpoint, an electrical network can be
represented by a directed-weighted graph where nodes repre-
sent electrical buses in the network, edges representing some
notion of electrical connectivity, and weights representing
the corresponding strength of connectivity. An important
element of any graph-clustering approach is the quantifi-
cation of the notion of similarity between any two nodes
in a network. These quantifications include but not limited
to - (1) structural similarity: based on quantities such as
degree distribution of nodes and degree assortativity [4],
graph diameter [5] and characteristic path length [6], (2)
topological similarity: Here electrical distance is derived
either from offline (non realtime) quantities such as nodal
conductance matrix [7] or power flow matrix [2] and online
quantities, such as derived time-series phase angle data from
phase measurement units (PMUs). While the measures of
structural similarity are useful for comparing power grids
with other graph structures, the absence of any underlying
dynamics (arising from Kirchhoff’s laws) fails to capture any
electrical coupling among nodes of the network. Topological
similarity measures alleviate this problem by introducing
notion of electrical distance obtained using circuit laws
and network theorems. Furthermore, offline measures of
similarity are preferred since the online methods rely on the
observed data after the disturbance has occurred.

In this paper, we quantify the electrical similarity between
any two nodes based on the first-order perturbation matrix
obtained by solving power flow equations [2]. We aim to
cluster an electrical network such that nodes within each
cluster have similar influence over the entire network. The
proposed approach is general in the sense that different
notions that quantify similarity and that quantify influence
can be used. For ease of exposition, the approach is presented
for a particular practical notion of influence; more precisely
the influence of one node on another is characterized in
terms sensitivity of voltage fluctuations at one node due
to reactive power perturbations at the other node. This
notion of influence is particularly useful since it encompasses
electrical connectivity rather than only the network structure;
for instance, two nodes that are strongly electrically coupled
through the network even though not directly physically
connected to each other will be considered similar in this
notion, since voltage variation at one node brings about
similar variation at the other node. Note that sensitivity to re-
active perturbations strongly assesses the electrical coupling
between buses, and not other features such as the amount
of power being generated or consumed in the network.
The proposed notion of similarity gives a measure of the



electrical coupling between buses for a given reactive power
circulation in the network. The approach proposed in this
paper is general and can easily accommodate other notions
of similarity that depend both on active and reactive powers.

Furthermore, we show that the grouping of nodes (buses)
achieved after clustering using this notion of influence is such
that the voltage fluctuations at a node due to perturbations
at nodes within the same cluster are more than voltage
fluctuations due to perturbations at nodes from other clusters.
That is, not only that perturbations at two nodes in the
same cluster have similar effects on the entire network, the
resulting voltage fluctuations at buses from other clusters
are much smaller than the voltage fluctuations at the buses
from the same cluster. Therefore, the algorithm partitions
the electrical network into clusters or zones that are weakly
coupled.

In this paper, the problem of grouping buses into electri-
cally similar clusters (or zones) is cast as a combinatorial op-
timization problem, which is reinterpreted as a combinatorial
resource allocation problem. Similar combinatorial resource
allocation problems have been studied in different areas
such as minimum distortion problem in data compression
[8], facility location problems [9], graph aggregation [10],
motion coordination algorithms,coverage control [11] and
mobile sensing network problems [12]. These problems are
non convex and computationally complex. It is well known
that most of them suffer from poor local minima that riddle
the cost surface. A variety of heuristic approaches (such as
Lloyd’s or k-means algorithm) have been proposed to address
this difficulty, and they range from repeated optimization
with different initialization, and heuristics to good initial-
ization, to heuristic rules for cluster splits and merges. In
this work, the approach for clustering buses is based on the
deterministic annealing (DA) algorithm [13]. This algorithm
offers two important features: (1) ability to avoid many poor
local optima and (2) has a relatively faster convergence
rate when compared to approaches as simulated annealing
or Lloyd’s/k-means algorithms. The DA algorithm shares
connections with the computation of rate-distortion functions
in information theory [8], [14], where an effective rate-
distortion function parameterized by an annealing variable is
formulated and this function is deterministically optimized
at successively increased values of the annealing parameter.

A significant contribution of this work is that it also
provides a way to characterize the sensitivity (robustness) of
representing a large network (graph) by a smaller aggregated
graph, with respect to the edge-weight parameters in the
original network. This characterization is utilized in defining
an edge centrality measure to identify the most important
edge in a network, which on removal results in maximum
change in the structure of the smaller representative graph.
The proposed centrality measure is general in the sense that it
applies to any regular directed weighted graph. Furthermore,
the sensitivity of graph clustering (or aggregation to a smaller
representative graph) to a given edge weight is obtained as
a byproduct of the proposed DA approach.

Fig. 1: An example of a four-bus network. Bus 1 is a Slack
bus whose voltage and angle are specified. Bus 2 is a Generator
bus (PV bus) whose real output power P and commanded output
voltage V are specified. Generators are set to regulate their own
bus to a commanded voltage (by adjusting reactive power). Bus 3
is a connecting bus with zero load. The load power is known, and
this is a PQ bus. Bus 4 is a load bus (PQ bus) with per unit (p.u.)
active and reactive powers P = 0.2; Q = 0.4 both given. The buses
are connected by line impedances Zij. The impedance matrix is
denoted by Zbus. The inverse matrix Ybus := Zbus

−1 denotes the
admittance matrix.

II. PROBLEM DESCRIPTION

In this paper, we discuss the problem of identifying
similar buses in an electrical network and grouping them into
different zones (clusters). More specifically, we are given a
power transmission system with N ∈N buses and electrical
connections among them, and the objective is to identify
K ∈ N zones in the network such that any two buses
belonging to the same zone have similar influence over the
network. The notion of electrical distance and similarity is
quantified in the next section.

III. QUANTIFICATION OF ELECTRICAL
DISTANCE

Our approach for the quantification of electrical proximity
of any two nodes is based on computation of the Jacobian
matrix obtained by solving power flow equations [2]. In
this context, we first describe the fundamental electrical
quantities and matrix equations linking them, followed by
quantification of electrical distances. Fig. 1 shows a four-bus
electrical network, an example network with nodes and links
representing buses and corresponding electrical connections,
respectively. The buses can be of different types - Slack bus,
Generator bus (or PV bus) and Load bus (or PQ bus). Each
node i is completely specified by four physical variables -
voltage magnitude Vi, phase θ, real power flow Pi, reactive
power flow Qi. The links are specified by line impedances
Zij. Zbus denotes the impedance matrix of the network. The
inverse matrix Ybus := [Yij] is the admittance matrix of
the network. The current injection at node i is given by
Ii. V and I are the column vectors of voltage and current
magnitudes, respectively. Similarly, P, Q, Θ are the column
vectors depicting real power flows, reactive power flows and
the voltage phase angles at the buses of an electrical network.

Recall that the admittance Yij is generally complex with
real part (conductance) Gij and imaginary part (susceptance)
Bij, i.e. Yij = Gij + jBij. These physical variables are related



by the following governing equations

I = YbusV, V = ZbusI,

Pj = ∑N
k=1 VkVj

(
Gkj cos(θk − θj) + Bkj sin(θk − θj)

)
,

Qj = ∑N
k=1 VkVj

(
Gkj sin(θk − θj)− Bkj cos(θk − θj)

)
, (1)

where, N is the number of nodes (buses) in the network
and j ∈ {1, . . . , N}. The last two equations are called the
power flow equations, and they are necessary to address the
power flow problem. In a power flow problem, the voltage
magnitudes and angles for one set of buses are desired when
voltage magnitudes and power levels for another set of buses
are known and when a model of the network configuration
is available. In order to quantify electrical distance between
any two nodes of a network, we consider small variations
around the power flow solution. The first order perturbations
in the above electrical quantities are given by,

∆I = Ybus∆V, ∆Q = [∂Q/∂V]∆V,
∆V = Zbus∆I, ∆V = [∂V/∂Q]∆Q, (2)

where matrices [∂Q/∂V] and [∂V/∂Q] ∈ RN×N are
inverses of each other. While the former matrix appears as
a Jacobian during a load-flow computation, the elements of
the latter matrix (also known as sensitivity matrix) reflect
the propagation of voltage variations due to reactive power
injection at a node throughout the electrical transmission
system.

Note that (2) not only represents the dynamical behavior
of an electrical system, it also captures the couplings between
different nodes of the grid. Using these equations, it is
possible to study the sensitivity of an electrical variable
(V, I, P, or Q) or any combination of them to perturbations
of electrical variables at other nodes. Grouping of nodes
based on such sensitivities prove very useful for subsequent
resource allocation or power network management problems.
For instance, (2) can be used to study the effect of injecting
power at a particular node on the voltage magnitudes at the
remainder of the network. Alternatively since reactive power
management is critical to voltage control for inductive grids,
one can study the effect of perturbations of reactive power at
a node on the voltages at different nodes in the network. The
proposed methodology in this paper can address grouping
of nodes based on a combination of sensitivity measures
such as above. For ease of illustration, in this paper we
investigate the case where we are interested in studying
the sensitivity of voltage fluctuations caused at a node with
respect to reactive power fluctuations at another node; in
particular we consider inductive power networks where the
effect of phase-angle perturbations on reactive power at each
node is negligible. Most high power electrical networks are
indeed largely inductive and therefore exhibit active-reactive
decoupling, i.e., P primarily depends on Θ and is almost
independent of V and similarly Q depends primarily on V
and is independent of Θ [15].

The influence of one node on another node is given by the
magnitude of voltage coupling between the two nodes, which
is quantified in terms of matrix of attenuation [αij] ∈ RN×N ,
that is

∆Vi = αij∆Vj, where αij :=

[
∂Vi
∂Qj

]/[ ∂Vj

∂Qj

]
, (3)

which quantifies the voltage fluctuation at node i per unit
voltage fluctuation at jth node, when reactive perturbations
are applied at node j. Note that the normalization in the
definition of αij has two distinct advantages - (i) making the
quantities dimensionless, (ii) assigning equal importance to
all the nodes (i.e. αii = 1, ∀i). If αi, αj denote the ith and jth

columns of the matrix of attenuation, respectively, then the
electrical distance between nodes i and j is defined as

d(i, j) = ‖αi − αj‖2
2 =

N

∑
k=1

(αki − αkj)
2; (4)

Qualitatively, two nodes i and j are close, when the influence
of these nodes on the network (including the nodes i and j
themselves) are commensurate with one another. Note that
from the definition (3), the diagonal terms of the attenuation
matrix satisfy αkk = 1, for all 1 ≤ k ≤ N, and therefore for
any ε > 0, if d(i, j) < ε ⇒ |αii − αij| = |1− αij| < ε.

Similarly, we have |1− αji| < ε. Therefore |αij − αji| <
2ε. Therefore, if two nodes i and j are close, then as a
consequence the influence of perturbations at nodes i and
j on each other are similar. This observation implies that if
we partition the nodes of a network in terms of how similar
they are in influencing the network, then the influence of
nodes on each other from the same cell in a partition will
be large, that is close to 1.

With this notion of distance between buses, we view an
electrical network as a weighted directed graph (digraph),
where buses represent the nodes, the elements αij represent
the edge weights. This makes it amenable to a graph ag-
gregation method developed in [10], where a large weighted
directed graph Gx with N nodes is approximated by a smaller
weighted directed graph Gy (with K � N nodes) such that
the smaller graph is the best representation of the larger
graph; the extent of representation is quantified in terms a
dissimilarity measure. In the resulting smaller graph, each
node of Gy can be viewed as representative of a set of nodes
on the larger graph Gx; in fact, the algorithm explicitly gives
the set of nodes in Gx that each node of Gy represents. Thus
this graph aggregation can be used to cluster nodes in Gx
into K clusters, for a given notion of distance between two
nodes. Accordingly we use the graph aggregation method
to group the buses in the electrical network into clusters
for the above notion of electrical distance. In the next
section, we briefly present this graph aggregation algorithm
and present its important features. A more rigorous and
exhaustive treatment can be found in [10]. An important
aspect of this article is that we reinterpret this algorithm
in terms of a specific information theoretic view point.
This reinterpretation enables answering questions such as
identifying the most influential edges or couplings in the
electrical network; disrupting which can cause the maximum
change to the behavior of the electrical network.

IV. GRAPH CLUSTERING
In this section, we develop a framework for aggregating

directed weighted graphs (digraphs). The objective is to
cluster buses in the electrical network; however we present
this work for a general directed weighted graph, since
this result is important by itself. A digraph G(V , E , W) is



described in terms of V , E ∈ V × V and W ∈ R
|V|×|V|
+

which represent the set of nodes, edges and the edge-weight
matrix, respectively. Furthermore, |V| = N ∈ N and the
relative node weights are denoted by {pi}, i ∈ {1, . . . , N},
which satisfy pi ≥ 0 with ∑i pi = 1. The incoming vector of
the ith node is described by the weights of its incoming edges
and is denoted by Wi , [W1i, . . . , WNi]

T , the ith column of
the matrix W. We consider a distance between two nodes
i and j based on edge connectivity given by d(Wi, Wj).
Note that this distance measures similarity between nodes;
for example, small value of d(Wi, Wj) implies that nodes i
and j have similar connectivity in the graph.

In graph clustering problems, a small representative graph
Gy with |Vy| = K is obtained from a large graph Gx with
|Vx| = N � K by aggregating similar nodes in Vx into K
supernodes and then determining the resulting connections
among these supernodes. This partition of the nodes Vx into
K clusters, where each cluster is represented by a supernode
in Vy is represented by partition function φ : Vx → Vy
which is such that for any 1 ≤ j 6= l ≤ K, φ−1(j) ⊂ Vx
is non-empty, φ−1(j)∩ φ−1(l) = Ø and ∪K

j=1φ−1(j) = Vx.
Each partition function φ defines an aggregation matrix Φ ∈
{0, 1}N×K as

Φij := [Φ]i,j =

{
1 if φ(i) = j,
0 otherwise. (5)

Before we state the graph aggregation problem precisely, we
present an example for ease of exposition of the subsequent
concepts. Consider a graph Gx with Vx = {1, 2, 3, 4} with
|Vx| = N = 4 nodes. The corresponding edge-weight matrix
is given by

X =

 0 0 0 0.5
0 0 0 1.5
0 0 0 1
2 2 2 0

 .

Suppose we want to determine a graph Gy with two
supernodes (|Vy| = K = 2), that is Vy = {1′, 2′}, which
aggregates the graph Gx. In this example, note that X contains
duplicated columns, which indicates {1, 2, 3} are similar;
in fact have identical connectivities. Therefore it is easy to
see that the a supernode (say 1′) should correspond to the
three nodes 1, 2, and 3 and another (2′) should correspond
to the node 4; that is we have the partition function given
by φ : {1, 2, 3, 4} → {1′, 2′} with φ−1(1′) = {1, 2, 3} and
φ−1(2′) = {4}. Therefore the corresponding aggregation
matrix Φ and the weight matrix Z ∈ RN×K are given by

Φ =

 1 0
1 0
1 0
0 1

 , Z =

 0 0.5
0 1.5
0 1
2 0

 .

Note here that the column Zφ(i) approximates the ith column
of X; in fact, in this example they are exactly the same. The
element Zkl in this weight matrix can be interpreted as a
directed weight from the kth supernode to lth node. Since
the first three rows correspond to the first supernode, this
matrix can again be aggregated to obtain the weight matrix

Y of Gy, that is Y = ΦTZ =

[
0 3
2 0

]
, which defines the

aggregated graph.
Note that in this example, the graph aggregation essentially

required aggregation of of the columns of the matrix X;

more precisely, it required finding a partition matrix Φ and
a corresponding weight matrix Z such that the cost function
minΦ,Z d(Xi, Zφ(i)) is minimized. Once the optimal double
(Φ, Z) are obtained the aggregated graph weight matrix is
given by Y = ΦTZ. Accordingly a general problem of
aggregating a large graph Gx(Vx, Ex, X) with |Vx| = N into
a graph Gy(Vy, Ey, Y) with |Vy| = K < N is given by

min
Φ∈χ,Z∈RN×K

pid(Xi, Zφ(i)), (6)

where χ represents the set of all {0, 1}N×K aggregation
matrices; the edge-weight matrix Y is then given by Y =
ΦTZ.

Most heuristics that address the optimization problem (6)
suffer from the curse of poor local minima and initialization.
In the next section, we describe an efficient iterative algo-
rithm that alleviates the issue of poor initialization and has
ability to avoid poor local minima.

V. DETERMINING ZONES USING
DETERMINISTIC ANNEALING ALGORITHM: AN

INFORMATION-THEORETIC VIEWPOINT
Interestingly, the cost function in the aggregation problem

(6) is algebraically the same as the cost function that arises in
source coding problem from information theory that we now
describe. By making this connection, it becomes possible to
avail the existing methods for the source coding problem to
solve (6).

A source coding problem is described in the context of
transmitting information in a parsimonious manner, where
a given dataset of symbols X = {Xi}N

i=1 is represented by
a smaller set of codewords Z = {Zj}K

j=1 with K � N.
The objective is to determine the codewords {Zj}K

j=1 and
a corresponding code φ : {1, · · · , N} → {1, · · · , K} that
ascribes to each symbol Xi a codeword Zφ(i) such that a
notion of a cumulative representation error given by

min
Z,φ

N

∑
i=1

pid(Xi, Zφ(i))︸ ︷︷ ︸
D(X,Z)

, (7)

where distortion D(X, Z) is a measure of error in represent-
ing {Xi} by {Zφ(i)}. Note that this optimization problem
is equivalent to the graph aggregation problem in (6). In
typical source coding problem formulations, the associations
between the symbols and the codewords are not given by
hard codes as described above, but are rather ascribed using
probabilistic distributions; more precisely the probability of
associating a codeword Zj to a symbol Xi is given by pj|i,
which results in a modified distortion D̄ given by

D̄(X, Z) =
N

∑
i=1

K

∑
j=1

pi pj|id(Xi, Zj). (8)

Note that the optimization problem

min
{Zj},{pj|i}

D̄(X, Z) (9)

is equivalent to (7) when we restrict probability distributions
{pj|i} to be hard, that is, pj|i ∈ {0, 1} for all 1 ≤ i ≤ N, 1 ≤
j ≤ K.



Since there is no prior information available regarding the
choice of {pj|i}, the deterministic annealing (DA) algorithm
seeks {pj|i} that minimize the mutual information I(X; Z)
between X and Z without exceeding a given distortion D̄∗,
i.e., the DA algorithm considers the following problem (also
referred to as rate-distortion problem [8])

R(D̄) , min
{pj|i}

I(X; Z) s.t. D̄(X, Z) ≤ D̄∗, (10)

where I(X; Z) , ∑i,j pi pj|i log
( pj|i

qj

)
, with qj =

∑N
i=1 pi pj|i. (10) appears in the context of rate-distortion

theory and provides an analytical expression for how much
compression can be achieved using lossy compression meth-
ods. The trade-off between minimizing the mutual infor-
mation and minimizing the modified distortion is achieved
by minimizing the Lagrangian given by, L , R(D̄) =
I(X; Z) + βD̄(X, Z), where β is the Lagrange multiplier,
referred to as the annealing parameter. Minimizing L with
respect to the association pj|i yields a Gibbs distribution

pj|i =
qj exp{−βd(Xi, Zj)}

∑K
j=1 qj exp{−βd(Xi, Zj)}

(11)

By substituting the association weights (11), the Lagrangian
simplifies as

F(Z) = −
N

∑
i=1

pi log

 K

∑
j=1

qj exp{−βd(Xi, Zj)}

 . (12)

Note that at very small values of β, minimizing the La-
grangian is equivalent to minimizing the mutual information
I(X; Z), which is a convex optimization problem and there-
fore a closed-form solution can be obtained. Also as β is
increased, minimization of the underlying Lagrangian results
in the minimization of the modified distortion D̄(X, Z).
However, it should be remarked that at large values of the
annealing parameter β, the association probabilities {pj|i} in
(11) are approximately 0 or 1, i.e., {pj|i} are hard. Therefore

as β increases, from pj|i
β→∞−−−→ Φij, where Φij is an element

of the (hard) aggregation matrix Φ, and from the equivalence
between (7) and (9) for hard partitions, minimization of
(12) with respect to {Zj} results in minimization of the
original distortion function D(X, Z). In the DA algorithm,
the Lagrangian in (12) is deterministically optimized at
successively increased values of β over repeated iterations
(For more details on the DA algorithm see [13]).

VI. IDENTIFYING MOST SIGNIFICANT LINK IN A
NETWORK

The solution approach for graph aggregation in this paper
has two distinct advantages - (a) The algorithm has ability
to avoid poor local minima and is independent of initial-
ization, (b) It provides a way to characterize the sensitivity
(robustness) of parameters Z, Φ that define the optimal
aggregated graph with respect to the edge-weight parameters
of the original large graph. This sensitivity calculations can
be then used to identify most important edges, which on
removal result in significant change in the structure of the
smaller representative graph. In this section, we develop a

mathematical framework to capture this sensitivity to edge-
weight parameters.

Note that the rate function R(D̄) provides an analytical
expression for how much compression of X is achieved in
representing it by Z, i.e., given a number of codewords
K ∈N, the central problem in rate-distortion theory is to find
the best possible distortion achievable with K codewords.
An equivalent problem in the context of graph clustering
is to obtain a smaller representative graph containing K
supernodes of a given graph, such that the smaller graph
approximates the original graph with minimum representa-
tion error. Equivalently in the graph aggregation problem,
analyzing the sensitivity of the rate-distortion function R(D̄)
with respect to an element Xkl of the edge-weight matrix
X gives a way to quantify the sensitivity of the optimal
parameters Φ and Z with respect to Xkl .

The sensitivity Skl of representing X by Z to an element
Xkl ∈ X is captured by the derivative of the Lagrangian or
the rate function R(D̄) given by

Skl ,
1

2β

∂F
∂Xkl

β→∞−−−→ pl

K

∑
j=1

Φl j(Xkl − Zkj). (13)

From (13) it can be observed that if the node l is asso-
ciated with the jth cluster, then the sensitivity to an edge
emanating from node k and ending at node l is given by
Skl = pl(Xkl − Zkj). The proposed notion of sensitivity is
comprehensive than simply describing the edge with largest
weight as the most significant edge in representing a large
graph with another smaller dimensional graph. This is seen
in the example below.

Consider a graph Gx with randomly generated edge-weight
matrix X as shown below. Gx is aggregated into a smaller
graph with 5 nodes with φ−1(1) = {1}, φ−1(2′) = {2, 3},
φ−1(3′) = {4}, φ−1(4′) = {5} and φ−1(5′) = {6}.

X =


5 1 2 0 1 3
6 8 9 6 10 8
6 3 9 10 4 3
4 2 6 1 4 9
6 10 0 2 6 0
5 10 3 1 1 7


Interestingly, the proposed sensitivity analysis for the given

graph suggests 6 → 4 as the most significant edge even
though the corresponding edge-weight is just 1. By removing
the edge 6 → 4 and re-aggregating the graph using DA
results in the new partition function given by φ̃−1(1) =
{1, 4}, φ̃−1(2′) = {2}, φ̃−1(3′) = {3}, φ̃−1(4′) = {5}
and φ̃−1(5′) = {6}. Removal of an edge with larger weight
does not necessarily result in a different representation. For
instance, removing the edge 6→ 2 (with an edge-weight of
8) instead does not change the original partition function φ
when aggregated using DA.

In the context of clustering of power transmission sys-
tems, identifying the most significant link corresponds to
identifying two nodes which have important bearing on the
underlying topology of the network. In the next section, we
illustrate the application of DA and the proposed sensitivity
measure for some standard test case configurations.



VII. RESULTS AND DISCUSSION

In this section, we report the results from the proposed
graph clustering algorithm on some standard network config-
urations such as the IEEE-14 test case. The IEEE 14 Bus Test
Case represents a portion of the American Electric Power
System (in the Midwestern US) as of February, 1962. The
test case includes all different kinds of buses - Slack, PV
and PQ. The matrix of attenuation

[
αij
]

is first obtained by
load-flow computation using Newton-Raphson method. The
obtained matrix is then clustered into 3 partitions. Reactive
power limits of generators are ignored during load-flow
computations for simplicity.

Effect of perturbations on inter and intra-cluster
elements: Table I shows the clustering results for the IEEE
14 bus data. The matrix of attenuation is obtained at the
operating point (power flow solution), and the DA algorithm
is employed to obtain three natural partitions (marked by
different colors in the ‘Bus Type’ column and also indi-
cated by the corresponding initials). Column 3 indicates
the solution of the power-flow problem in p.u. (per unit),
while columns 4 and 5 indicate the effect of perturbations in
generator voltage magnitudes at buses 2 and 6, respectively.
As is seen in columns 4 and 5 of Table I, the influence of
these perturbations is larger at the buses belonging to the
same group (cluster) where the perturbations originate. For
instance, doubling the generator voltage at bus 2 results in
change in voltage magnitudes at buses 4 and 5 by about
0.4 p.u. The effect of this perturbation is less severe at other
buses, which do not belong to the group formed by the buses
2, 3, 4 and 5. Note that bus 3 is a generator bus (PV bus)
where voltage is set a priori, and hence there is no change
in its voltage magnitude.

Effect of perturbations at buses within the same cluster
over the remainder of the network: As stated earlier, two
buses are deemed close when they have close similarity in
terms of the influences over the entire network. Columns
4 and 6 in Table I demonstrate the effect of doubling
generator voltages at buses 2 and 3, respectively. Note that
these buses lie in the same group. It is easily seen that the
influences of these perturbations over the entire network are
similar. For instance, bus 12 is not largely influenced by
these perturbations. The perturbations result in the changes

TABLE I: Clustering Results For IEEE-14 Bus Data

Bus
#

Bus Type Volt mag.
Operating

pt

Volt
mag.

(2×V2)

Volt
mag.

(1.5×V6)

Volt
mag.

(2×V3)
1 Slack (B) 1.0600 1.0600 1.0600 1.0600
2 PV (Y) 1.0450 2.0900 1.0450 1.0600
3 PV (Y) 1.0100 1.0100 1.0100 2.0200
4 PQ (Y) 1.0142 1.4043 1.1021 1.2372
5 PQ (Y) 1.0172 1.4082 1.1269 1.1495
6 PV (G) 1.0700 1.0700 1.6050 1.0700
7 PQ (B) 1.0503 1.2254 1.1747 1.1496
8 PV (B) 1.0900 1.0900 1.0900 1.0900
9 PQ (G) 1.0337 1.2003 1.2530 1.1270
10 PQ (G) 1.0326 1.1705 1.3088 1.1096
11 PQ (G) 1.0475 1.1179 1.4510 1.0866
12 PQ (G) 1.0535 1.0661 1.5695 1.0607
13 PQ (G) 1.0471 1.0715 1.5421 1.0606
14 PQ (G) 1.0213 1.1276 1.3650 1.0807

in voltage magnitudes at bus 12 by 0.0126 p.u. and 0.0072
p.u., respectively. However, the effect is large on buses such
as bus 7, where the changes in voltage magnitudes are 0.1751
p.u. and 0.0993 p.u., respectively.

Remark: The DA algorithm is scalable and has also
been verified for relatively larger networks, such as IEEE-30
bus and IEEE-300 bus systems. The results have not been
included for the sake of brevity.

Identifying most significant link in the IEEE 14 bus
network: The sensitivity analysis in Sec. VI suggests that
the most significant edge is 4→ 12 with α4,12 = 0.8040. A
perturbation in α4,12 results in large change in the underlying
topological structure of the network. Removal of edge 4→
12 results in following new partition of the network:
• Cluster 1: Buses 1, 2, 3, 5, 7, 8
• Cluster 2: Bus 4
• Cluster 3: Buses 6, 9, 10, 11, 12, 13, 14

Note that even though α1,4 = 1.0316 is larger, removal of
edge 1→ 4 does not bring about any change in the original
partition of the network. Thus a weight based edge centrality
measure is inadequate in capturing the true topological
structure of an electrical network.
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