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Abstract— This paper considers solving distributed optimiza-
tion problems in peer-to-peer multi-agent networks. The net-
work is synchronous and connected. By using the proportional-
integral (PI) control strategy, various algorithms with fixed
stepsize have been developed. Two notable among them are
the PI algorithm and the PI consensus algorithm. Although the
PI algorithm has provable linear or exponential convergence
without the standard requirement of (strong) convexity, a
similar guarantee for the PI consensus algorithm is unavailable.
In this paper, using Lyapunov theory, we guarantee exponential
convergence of the PI consensus algorithm for global cost
functions that satisfy the restricted secant inequality, with
rate-matching discretization, without requiring convexity. To
accelerate the PI consensus algorithm, we incorporate local pre-
conditioning in the form of constant positive definite matrices
and numerically validate its efficiency compared to the promi-
nent distributed convex optimization algorithms. Unlike classi-
cal pre-conditioning, where only the gradients are multiplied by
a pre-conditioner, the proposed pre-conditioning modifies both
the gradients and the consensus terms, thereby controlling the
effect of the communication graph on the algorithm.

Index Terms— Agents-based systems, Distributed optimiza-
tion algorithms, Lyapunov methods

I. INTRODUCTION

We consider solving the multi-agent distributed convex op-
timization problem over a peer-to-peer network of m agents.
Each agent i ∈ {1, 2, . . . ,m} in the network can communi-
cate with a certain set of other agents called its neighbors,
denoted by Ni. The inter-agent communication topology is
represented by an undirected graph G = ({1, . . . , m}, E),
with an edge (i, j) ∈ E or (j, i) ∈ E if agent i and agent
j are neighbors, for any i, j ∈ {1, . . . ,m}, i ̸= j. Each
agent has a local and private cost function fi : Rd → R.
The agents aim to compute a common vector x∗ ∈ Rd that
minimizes the aggregate cost function held by all the agents:

x∗ ∈ arg min
x∈Rd

m∑
i=1

fi(x). (1)

We let f : Rd → R and F : Rmd → R, respectively,
denote the aggregate cost and the cumulative cost, i.e.,
f(x) =

∑m
i=1 fi(x) and F (x) =

∑m
i=1 fi(xi) for x ∈ Rmd.

A class of distributed gradient-based continuous-time al-
gorithms that solve (1) is based on proportional-integral (PI)
control law [1]. Here, an integral error term [2], [3] or a
consensus term of integral errors [4] is fed back to the state
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dynamics to guarantee consensus and convergence [5]. We
focus on PI consensus algorithm, because we noticed that the
PI consensus algorithm has convergence speed comparable
or favorable to competing algorithms, e.g., EXTRA, DIGing,
PI, that also have provable exponential rate. However, PI
consensus can be slower than the more recent double-loop
Accelerated-EXTRA [6] algorithm (see Figure 2). We find
that the PI consensus algorithm can be accelerated by a suit-
able preconditioning strategy. Details of the preconditioning
matrix is presented in Section IV.

Existing works [2]–[5] used Lyapunov theory to prove
asymptotic stability of PI-based algorithms for convex lo-
cal costs. However, achieving accelerated convergence to a
solution of (1) requires a stronger form than just asymptotic
stability. Exponential stability of the continuous-time PI
algorithm has been proved in [2] for directed graphs when
the local costs are strongly convex and in [3] when the
cumulative cost F satisfy the restricted secant inequality
(RSI) condition. RSI is one of the strong-convexity relaxation
classes for guaranteeing linear convergence of centralized
algorithms [7]. Quasi-strongly convex or composition of
strongly convex function with linear map plus a linear term
satisfy RSI. Despite utilizing PI control, the PI algorithm [2],
[3] and the PI consensus [4], [5] algorithm are different in
their estimate updates and the initialization of the integral
error states [1]. To highlight this, we briefly present their
update strategies below. Each agent i in PI consensus updates
its state xi and the integral consensus vi as [4]

ẋi=
∑
j∈Ni

(xj − xi)−β
∑
j∈Ni

(vj − vi)−α∇fi(xi), (2)

v̇i =β
∑
j∈Ni

(xj − xi), (3)

where α, β > 0 are algorithm parameters. Whereas the PI
algorithm is described by [2]

ẋi=
∑
j∈Ni

(xj − xi)−βvi−α∇fi(xi), (4)

v̇i =− β
∑
j∈Ni

(xj − xi). (5)

Specifically, the PI consensus algorithm (2)-(3) can be inter-
preted as a primal-dual algorithm for solving

min
{xi∈Rd,∀i}

m∑
i=1

fi(xi), s.t. (L⊗ I)x = 0md,
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and the PI algorithm (4)-(5) is a primal-dual algorithm for

min
{xi∈Rd,∀i}

m∑
i=1

fi(xi), s.t. (L⊗ I)1/2x = 0md,

where I denotes the (d × d)-dimensional identity matrix,
L denotes the Laplacian matrix of the graph G, ⊗ denotes
the Kronecker product, and x = [x⊤

1 . . .x⊤
m]⊤. So, each

agent in PI consensus (2)-(3) shares both xi and vi with its
neighbors, which allows the agents to incorporate the integral
consensus term

∑
j∈Ni

(vj − vi) in its xi-update. On the
other hand, each agent in PI (4)-(5) shares only xi with its
neighbors, and does not use vj to update its xi. Moreover,
the convergence of the PI algorithm (4)-(5) requires each
vi(0) to be initialized as the zero vector, whereas the PI
consensus (2)-(3) allows arbitrary initialization of each vi(0).
So, PI consensus (2)-(3) is robust to the initialization of
vi(0) [3], with both algorithms having communication com-
plexity O(d). Exponential stability of the continuous-time
PI consensus (2)-(3) has been proved in [8] for metrically
subregular primal-dual gradient maps and convex local costs
and in [9] for strong convex f .

Hence, while exponential stability of the PI algorithm (4)-
(5) has been proved in [3] when F satisfies the RSI condition,
exponential stability of the PI consensus algorithm (2)-(3) for
the same class of cost functions has not been proved in the
literature. We prove exponential stability of the continuous-
time PI consensus algorithm for undirected graphs when F
satisfies the RSI condition with Lipschitz continuous local
gradients without requiring convexity of the cost function.
Note that an even stronger notion of convergence is fixed-
time convergence [10] in continuous-time.

Despite key insights from studying optimization algo-
rithms as continuous-time dynamics, there is substantial liter-
ature on discrete-time distributed algorithms. In the seminal
distributed gradient-descent (DGD) algorithm, each agent
combines its local gradient and consensus terms to update the
local estimate of x∗ [11]. Notable discrete-time algorithms
that are built upon DGD include ADMM [12], EXTRA [13],
DIGing [14], PI [2], APM-C [15], Mudag [16], Acceler-
ated EXTRA [6], DAccGD [17], and ACC-SONATA [18].
For convex local costs, asymptotic convergence of DGD,
ADMM, EXTRA, DIGing, PI, and Accelerated EXTRA is
proved, assuming Lipschitz continuous or bounded local
gradients. Linear convergence of these algorithms requires
stronger assumptions, such as restricted strong convexity
of the aggregate cost for EXTRA [13], restricted secant
inequality for the PI algorithm [3], strong convexity of each
local cost [12], [14], [19]. The implementation itself of APM-
C, Mudag, DAccGD, and ACC-SONATA requires the value
of the strong-convexity coefficient of the cumulative or the
aggregate cost function. For the first time, we prove linear
convergence of the discrete-time PI consensus algorithm
for undirected graphs when F satisfies the RSI condition
with Lipschitz continuous local gradients without requiring
convexity of individual local costs. Thus, compared to the
analysis of PI algorithm (4)-(5) in [3], we have a similar
contribution for the PI consensus algorithm (2)-(3).

The key contributions of our work are summarized below.

• Although the PI algorithm (4)-(5) has provable linear or
exponential convergence when the cost function satisfies
the restricted secant inequality, without the standard
requirement of (strong) convexity, the distributed op-
timization literature lacks a similar guarantee for the
PI consensus algorithm (2)-(3) when solving (1) with
the same class of cost functions. We aim to address
this problem. For the first time, we rigorously prove
exponential convergence of the continuous-time and
discrete-time PI consensus algorithm when F satisfies
the restricted secant inequality condition with Lipschitz
continuous local gradients without requiring convexity.
Our analyses also apply to the case of local pre-
conditioning with constant positive-definite matrices.
The details are in Section III.

• In Section IV, we propose a choice of pre-conditioning
and numerically show its efficacy. Pre-conditioning po-
tentially increases the effective graph connectivity by
modifying the edge weights, leading to faster consensus.

Due to their difference in local estimate update, as de-
scribed in (2)-(5), analysis of the PI algorithm (4)-(5) in [3]
does not trivially apply to PI consensus (2)-(3). Thus, the
novelty of our paper lies in proving exponential or linear
convergence of PI consensus (2)-(3), under relaxed assump-
tion than the existing analyses of (2)-(3). Furthermore, we
propose a local pre-conditioning that can potentially reduce
the convergence time of the existing PI consensus method.

II. ASSUMPTIONS AND PRELIMINARIES

Notation: Let N be any natural number. We use ∇g to
denote the gradient of a function g : RN → R. We let ∥v∥
denote the Euclidean norm of v ∈ RN and ∥M∥ denote the
induced 2-norm of a matrix M . We let 0N denote the N -
dimensional zero vector. We denote a block-diagonal matrix
of appropriate dimensions by Diag(.). We use the abbrevia-
tion SPD for symmetric positive definite. We let λL and λL

denote the largest and the smallest non-zero eigenvalue of
the Laplacian L. We let X∗ = [(x∗)

⊤, . . . , (x∗)
⊤]⊤. Finally,

we let L̃ = L⊗ I .

Definition 1. A differentiable function g : RN → R satisfies
the restricted secant inequality (RSI) with respect to x∗
with constant µ > 0 if (∇g(x) − ∇g(x∗))

⊤(x − x∗) ≥
µ ∥x− x∗∥2 ∀x ∈ RN , where x∗ is the unique global
minimizer of g [3], [13].

Definition 2. A sequence {x(k)}⊂RN converges linearly to
x∗∈RN with rate ρ∈(0, 1) if there exist constants C,K > 0
such that ∥x(k)−x∗∥ ≤ Cρk−K ,∀k ≥ K.

Assumption 1. |minx∈Rd f(x)| < ∞ and the solution set
of problem (1) is non-empty.

Assumption 2. Each fi is continuously differentiable.

Assumption 3. G is undirected and connected.



Assumption 4. F satisfies the restricted secant inequality
with respect to x∗ with a constant µ > 0, and its gradient
∇F is Lf -Lipcshitz continuous (F is smooth).

Assumption 4 is weaker than the existing works on the
analysis of PI consensus algorithm (2)-(3), such as [5],
[20], in the sense that it does not require convexity of
the cost function. It further implies that every stationary
point is a global minimizer, i.e., the solution set is {x∗ ∈
Rd|

∑m
i=1 ∇fi(x∗) = 0d}.

The following result is standard in Lyapunov stability
theory of autonomous systems [21].

Lemma 1. Consider the system ẋ = g(x) where x ∈
RN ,g : RN → RN ,g(0N) = 0N, and g is Lipschitz
continuous over RN . Let V : RN → R be a con-
tinuously differentiable positive definite function such that
k1 ∥x∥a ≤ V (x) ≤ k2 ∥x∥a and V̇ (x) ≤ −k3 ∥x∥a for any
x ∈ RN , where k1, k2, k3, a are positive constants. Then,
the origin is globally exponentially stable, i.e., ∥x(t)∥ ≤
(k2

k1
)1/ae−

k3
k2a t ∥x(0)∥ , ∀x(0) ∈ RN .

III. CONVERGENCE OF PI CONSENSUS ALGORITHM

For simplicity in presenting our results, we assume that
the solution of (1), defined in Remark 1, is unique, denoted
by x∗. Later, we discuss the applicability of our results in
the case when the solution is not unique.

The algorithm presented next is built upon the distributed
PI consensus algorithm [4], [5] for solving (1). However,
the difference is that each agent i ∈ {1, 2, . . . ,m} in this
algorithm multiplies the local gradient and the consensus
terms with a fixed pre-conditioner matrix Ki. Each Ki is
SPD and chosen by the agents independently before the
algorithm begins. Later, in the next section, we propose a
choice of pre-conditioning and numerically show its efficacy
in improving the convergence time.

At each t ≥ 0, each agent i ∈ {1, 2, . . . ,m} in the (pre-
conditioned) PI consensus algorithm updates its state xi and
the integral consensus vi according to

ẋi=Ki

(∑
j∈Ni

(xj − xi)−β
∑
j∈Ni

(vj − vi)−α∇fi(xi)

)
, (6)

v̇i =βKi

∑
j∈Ni

(xj − xi). (7)

Here, α and β are positive scalar parameters of the algorithm,
whose values are presented later in this section. For conve-
nience, we combine the agents’ dynamics in a matrix form
as follows. We let x = [x⊤

1 . . .x⊤
m]⊤ and v = [v⊤

1 . . .v⊤
m]⊤

respectively denote the agents’ combined state vector and
the integral consensus at each time t ≥ 0. We define the
combined pre-conditioner K = Diag

({
Ki
}m
i=1

)
. Note that

K is SPD, as each Ki is SPD. Then, (6)-(7) can be rewritten:[
ẋ
v̇

]
= −

[
KL̃x− βKL̃v + αK∇F (x)

βKL̃x

]
. (8)

Recall the definition of X∗ from Section II. Since K is SPD,
it can be verified that, under Assumptions 1-4, if (X∗,v∗)
is an equilibrium point of (8), then x∗ solves (1).

Upon utilizing LaSalle’s invariance principle [21], under
Assumptions 1-4, it can be proved that each agent’s estimate
in Algorithm (6)-(7) with x(0),v(0) ∈ Rmd asymptotically
converges to the same solution x∗ of (1). It does not
require the convexity of individual local costs. The proof
for asymptotic stability uses the Lyapunov function V :
R2md → R such that V (z,y) = 1

2

(
z⊤K−1z+ y⊤K−1y

)
for z,y ∈ Rmd and follows the proof of Theorem 1 in [5].
So, LaSalle’s principle guarantees asymptotic stability of (8),
but with an unknown rate. The following analysis implies
that Lyapunov theory (Lemma 1) can guarantee stronger
stability for the class of F that satisfies Assumption 4.

Theorem 1. Consider algorithm (8) with initial condition
x(0),v(0) ∈ Rmd. Suppose that Assumptions 1-4 hold true.
Then there exists α, β, β ∈ (0,∞) such that, for α < α and
β ∈ (β, β), the local estimate xi exponentially converges to
the same x∗ for each agent i ∈ {1, 2, . . . ,m}.

Proof. We define the estimation errors at time t ≥ 0 as z =
x−X∗, y = v − v∗. Then, from (8),[

ż
ẏ

]
=−

[
K(L̃z− βL̃y + α∇F (x)− α∇F (X∗))

βKL̃z

]
. (9)

Consider the case L̃y ̸= 0md. We define Lyapunov candidate
V : R2md → R such that

V (z,y) =
c1
2
z⊤K−1z+

c2
2
y⊤K−1y − c3z

⊤K−1y,

where c1, c2, c3 > 0. Along the trajectories of (9),
V̇ = c1z

⊤K−1ż+ c2y
⊤K−1ẏ− c3z

⊤K−1ẏ− c3y
⊤K−1ż.

Upon substituting from (9), V̇ = −(c1 − βc3)z
⊤L̃z −

αc1z
⊤(∇F (x) − ∇F (X∗)) + (βc1 − βc2 + c3)y

⊤L̃z −
c3(βy

⊤L̃y − αy⊤(∇F (x) − ∇F (X∗))). Suppose, (c1 −
βc3) > 0. We use the following result from Lemma 2
of [3]. Under Assumptions 1-4, there exist α > 0, µ1 =

min{ µ
2mαc1, (c1 − βc3)λL − 2mL2

f+µαc1Lf

µαc1
} s.t. if α < α,

αc1(∇F (x)−∇F (X∗))
⊤(x−X∗) + (c1 − βc3)x

⊤L̃x
≥ µ1 ∥x−X∗∥2 , ∀x ∈ Rmd. (10)

Following the proof of Theorem 1 in [3], from above,
V̇ ≤ −µ1 ∥z∥2 + (βc1 − βc2 + c3)y

⊤L̃z − c3(βy
⊤L̃y −

αy⊤(∇F (x)−∇F (X∗))). If (βc1 − βc2 + c3) = 0,

V̇ ≤ −µ1 ∥z∥2 − βc3λL ∥y∥2 + αc3y
⊤(∇F (x)−∇F (X∗))

≤ −µ1 ∥z∥2 − βc3λL ∥y∥2 + αc3 ∥y∥ ∥∇F (x)−∇F (X∗)∥
≤ −µ1 ∥z∥2 − βc3λL ∥y∥2 + αc3p ∥y∥2

+
αc3
p

∥∇F (x)−∇F (X∗)∥2

≤ −(µ1 −
αc3L

2
f

p
) ∥z∥2 − c3(βλL − αp) ∥y∥2 ,

where p > 0 and the third inequality follows from ∇F
being Lf -Lipschitz continuous under Assumption 4. Suppose

that (µ1 − αc3L
2
f

p ) > 0 and (βλL − αp) > 0. From the
definition of V , c1c2 > c23 implies that V (z,y) > 0 for any



[
z⊤ y⊤]⊤ ̸= 02md and V (02md) = 0. Hence, if the four

positive scalar parameters c1, c2, c3, β satisfy

c1c2 > c23, c1 > βc3, α
2L2

fc3 < βµ1λL, βc1 − βc2 + c3 = 0,
(11)

then one can choose p ∈ (
αL2

f c3
µ1

,
βλL

α ), so that

V̇≤−min{µ1−
αc3L

2
f

p
,c3(βλL − αp)}(∥z∥2 + ∥y∥2), (12)

V ≥ϵ(∥z∥2 + ∥y∥2), (13)

for some ϵ > 0. By definition, V (z,y) ≤
∥∥K−1

∥∥ ( c12 ∥z∥2+
c2
2 ∥y∥2 + c3

2 (∥z∥
2
+ ∥y∥2)), implying that

V (z,y) ≤ ϵ(∥z∥2 + ∥y∥2), (14)

for some ϵ > 0. So, the conditions of Lemma 1 hold.
Next, we consider the other case L̃y = 0md. The error

dynamics (9) is reduced to ż = −KL̃z − αK(∇F (x) −
∇F (X∗)). Consider the Lyapunov candidate V2 : Rmd → R
such that V2(z) =

1
2z

⊤K−1z for z ∈ Rmd. Along the above
trajectories, V̇2(z) = z⊤K−1ż = −z⊤L̃z − αz⊤(∇F (x) −
∇F (X∗)). Under Assumptions 1-4, we have similar result
as (10): there exist α, µ2 > 0 such that if α < α then,

α(∇F (x)−∇F (X∗))
⊤(x−X∗) + x⊤L̃x ≥ µ2 ∥x−X∗∥2.

Then, V̇2(z) ≤ −µ2 ∥z∥2. Moreover, V2(z) is quadratic in
z ∈ Rmd. So, the conditions of Lemma 1 hold.

Since we have a switched dynamics of (9) depending on
whether y(t) is in the null-space of L̃, we make the following
argument to conclude exponential stability of (9). Consider
any time t = t1 when the Lyapunov function V2 is active.
Since V2(z) is quadratic for any z, V2(t1) ≥ k1 ∥z(t1)∥2 and
V2 ≤ k2 ∥z∥2 for some k1, k2 > 0 and for all t. Moreover,
z exponentially decreases when either V or V2 is active. So,
there exists t2 ∈ [t1,∞) such that V2(t2) ≤ k2 ∥z(t2)∥2 ≤
k1 ∥z(t1)∥2 ≤ V2(t1). Hence, there exists a subsequence of
R>0 over which V2 is exponentially decreasing. Owing to
Lemma 1, the proof is complete. ■

Next, we verify the feasibility of (11). We have

βc1 − βc2 + c3 = 0, c1c2 > c23 ⇐⇒ βc21 + c1c3 > βc23,

c1 > βc3 ⇐⇒ βc21 + c1c3 > (β2 + 1)c1c3.

(β2 + 1)c1 > c1 for any c1 > 0. We choose c1 and c3 such
that c1 > βc3. Then, (β2 + 1)c1 > c1 > βc3, which implies
that (β2 + 1)c1c3 > βc23. The above and c1 > βc3 together
imply that βc21+ c1c3 > βc23. So, with β > 0, the conditions
c1c2 > c23, c1 > βc3, βc1 − βc2 + c3 = 0 are feasible. We
have two cases for

µ1 = min{ µ

2m
αc1, (c1 − βc3)λL −

2mL2
f + µαc1Lf

µαc1
}.

Case-I: µ1 = µ
2mαc1. In this case,

α2L2
fc3 < βµ1λL ⇐⇒ βc3 ≤ β2c1λLµ

2mL2
fα

.

There exists α such that, for α < α we have
2mL2

fα

β2λLµ < 1,

i.e., β2c1λLµ

2mL2
fα

> c1. Thus, c1 > βc3, α
2L2

fc3 < βµ1λL are
feasible for α < α.
Case-II: µ1 = (c1 − βc3)λL − 2mL2

f+µαc1Lf

µαc1
. We denote

q =
2mL2

f+µαc1Lf

µαc1
. Then, µ1 = (c1 − βc3)λL − q and

α2L2
fc3 < βµ1λL ⇐⇒ c3 <

βλL((c1 − βc3)λL − q)

α2L2
f

⇐⇒ βc3 <
β2λL(c1λL − q)

α2L2
f + β2λ2

L

.

We denote p =
1+β2λ2

L

β2λ2
L

. Note that p > 1. Now,

p =
1 + β2λ2

L

β2λ2
L

=⇒ c1(1− p
β2λ2

L

1 + β2λ2
L

) = 0

=⇒ c1(1− p
β2λ2

L

1 + β2λ2
L

) > −p
β2λLq

1 + β2λ2
L

⇐⇒ c1 > p
β2λL(c1λL − q)

1 + β2λ2
L

.

Then, c1 > p
β2λL(c1λL−q)

α2L2
f+β2λ2

L
>

β2λL(c1λL−q)

α2L2
f+β2λ2

L
for α < 1

Lf
.

Thus, c1 > βc3, α
2L2c3 < βµ1λL are feasible for α < 1

Lf
.

From the above arguments, we conclude that (11) is feasible
under the conditions of Theorem 1.

Next, we use a first-order explicit Euler discretization
of (6)-(7) with fixed stepsize h > 0 to obtain the following
algorithm from (6)-(7). For each k ≥ 0 and each agent i,

xi(k + 1) = xi(k) + hKi

∑
j∈Ni

(xj(k)− xi(k))

− hβKi

∑
j∈Ni

(vj(k)− vi(k))− hαKi∇fi(xi(k)), (15)

vi(k + 1) = vi(k) + hβKi

∑
j∈Ni

(xj(k)− xi(k)). (16)

The above algorithm can be compactly written as[
x(k + 1)
v(k + 1)

]
=

[
x(k)
v(k)

]
− h

[
KL̃x(k)− βKL̃v(k) + αK∇F (x(k))

βKL̃x(k)

]
. (17)

The following result makes use of Lyapunov stability the-
ory to prove linear convergence of the locally pre-conditioned
algorithm (17) under the same Assumptions of Theorem 1,
leading to rate-matching or consistent discretization of (8).

Theorem 2. Consider algorithm (17) with initial condition
x(0),v(0) ∈ Rmd. Suppose that Assumptions 1-4 hold true.
Then there exists α, β, β, h ∈ (0,∞) such that, for α < α,
β ∈ (β, β), and h < h, the local estimate xi(k) linearly
converges to the same x∗ for each agent i ∈ {1, 2, . . . ,m}.

Proof. We define the error at iteration k ≥ 0 as Z(k) =



[
z(k)
y(k)

]
=

[
x(k)−X∗
v(k)− v∗

]
, For Z = [z⊤,y⊤]⊤ ∈ R2md, let

F̃ (Z) =

[
KL̃z− βKL̃y + αK(∇F (x)−∇F (X∗))

βKL̃z

]
.

Then, from (17), the error dynamics is

Z(k + 1) = Z(k)− hF̃ (Z(k)). (18)

Consider the case L̃y(k) ̸= 0md. As in the proof of
Theorem 1, we define the Lyapunov function candidate V :
R2md → R such that V (Z) = c1

2 z
⊤K−1z + c2

2 y
⊤K−1y −

c3z
⊤K−1y for Z = [z⊤y⊤]⊤ ∈ R2md, where c1, c2, c3 > 0.

Clearly, ∇V (Z) is Lipschitz continuous with some Lipschitz
constant η > 0. Then, from Lemma 5 in [3], we get
V (Z(k+1)−V (Z(k)) ≤ (Z(k+1)−Z(k))⊤∇V (Z(k))+
η
2 ∥Z(k + 1)− Z(k)∥2. Along the trajectories of (18),

V (Z(k + 1)− V (Z(k))

≤ −hF̃ (Z(k))⊤∇V (Z(k)) +
h2η

2

∥∥∥F̃ (Z(k))
∥∥∥2 . (19)

Following the proof of Theorem 1, similar to (12)-(14):

−F̃ (Z(k))⊤∇V (Z(k)) ≤ −ϵ1V (Z(k)), (20)

V (Z(k)) ≥ ϵ ∥Z(k)∥2 . (21)

From the definition, ∥F̃ (Z)∥2 ≤ ∥K∥2 (β2λ
2

L ∥z∥2 +∥∥∥(L̃z− βL̃y + α(∇F (x)−∇F (X∗)))
∥∥∥2. Upon expanding

the second term on the RHS above and utilizing AM-GM
inequality, the definition of induced 2-norm of matrices, and
Lipschitz continuity of ∇F under Assumption 4, we obtain

that there exists ϵ2 > 0 such that
∥∥∥F̃ (Z)

∥∥∥2 ≤ ϵ2 ∥Z∥2.
Upon substituting above from (21), there exists ϵ3 = ϵ2

ϵ > 0

such that
∥∥∥F̃ (Z)

∥∥∥2 ≤ ϵ3V (Z). Upon substituting from above

and (20) in (19), V (Z(k + 1)) ≤ (1− h 2ϵ1−hηϵ3
2 )V (Z(k)).

If h ∈ (0, 2ϵ1
ηϵ3

), then ρ := (1− h 2ϵ1−hηϵ3
2 ) < 1.

For L̃y(k) = 0md, we consider the Lyapunov candidate
V2 : Rmd → R such that V2(z) =

1
2z

⊤K−1z for z ∈ Rmd.
Proceeding similarly as V above, we obtain V (Z(k+1)) ≤
ρ2V2(Z(k)) for some ρ2 < 1. The proof follows from the
argument in the last paragraph of Theorem 1’s proof. ■

Remark 1. The aforementioned analysis has assumed a
unique solution x∗ of (1). When the solution set is not
singleton, we denote the solution set of (1) by xsol,
and define Xsol = [(xsol)

⊤, . . . , (xsol)
⊤]⊤. In this case,

F is said to satisfy the RSI condition if (∇F (x) −
∇F (PXsol

(x))⊤(x−PXsol
(x)) ≥ µ ∥x− PXsol

(x)∥2 ∀x ∈
Rmd, where PXsol

(x) := argminy∈Xsol
∥x− y∥2 is

the projection of x onto Xsol [3]. We define x0 =
[(PXsol

(x))⊤, . . . , (PXsol
(x))⊤]⊤. We assume that the gra-

dients of the cumulative cost F at any point on the solution
set, i.e., {∇F (x)|x ∈ Xsol} is a singleton. Under this as-
sumption, the proofs of Theorem 1-2 are valid upon replacing
X∗ with x0. This is possible by invoking the properties of
the projection operator from Theorem 1.5.5 in [22].

IV. NUMERICAL RESULTS

A suitable choice of Ki could impact the convergence
rate of PI consensus. For example, when fi’s are convex,
consider Ki =

(
∇2fi(xi(0)) + γI

)−1
where γ > 0. In

the case of single-agent, K ′
i =

(
∇2fi(xi(t))

)−1
results

in Newton’s method which is fast. However, it requires
computing the expensive inverse Hessian at each t. Instead,
we limit computing the inverse Hessian only once, before
initiating the algorithm. Since the matrix inverse for Ki

is computed once by each agent, it does not increase the
per-iteration computational complexity of PI consensus. The
parameter γ extends this pre-conditioner to non-strongly
convex fi’s. Hence, we consider this choice of Ki.

To show the efficiency of (15)-(16) with the proposed
choice of pre-conditioner, we conduct two numerical sim-
ulations. First, we consider the problem from [3, Section
VI] with m = 5 agents. Each fi is non-convex and satisfies
the RSI condition (see [3]). Next, we consider the binary
classification problem between the digits one and five us-
ing the MNIST training dataset. We consider the logistic
regression model and conduct experiments to minimize the
cross-entropy error on the training data. The data points are
distributed equally among m = 5 agents. The cumulative
cost function does not satisfy Assumption 4 for this problem,
and there are multiple solutions of (1). In both problems, the
communication topology is a ring. For a fair comparison,
the parameters in each algorithm are tuned such that the
respective algorithm converges in fewer iterations. xi(0) in
all the algorithms are the same, and each entry is chosen from
the Normal distribution with zero mean and 0.1 standard
deviation. vi(0) in the proposed algorithm and PI consensus
algorithm are chosen similarly, and vi(0) for the PI algorithm
is according to [3]. Since F is not strongly convex, the APM-
C, Mudag, DAccGD, and ACC-SONATA algorithms are not
applicable in both the problems, as their implementation
requires the positive value of the strong-convexity coefficient.

From Figure 1 and Figure 2, the PI consensus algorithm
with the proposed Ki converges much faster than the other
algorithms. In the first example, the condition number of the
Hessian of F is of order 10. In contrast, in the second exam-
ple, the ratio between the largest and the smallest non-zero
singular value of the Hessian of F is of order 1011. Thus,
even for ill-conditioned problems, the proposed algorithm
can converge significantly faster than the other algorithms.
Further, from Figure 1, the PI consensus algorithm converges
linearly under restricted secant inequality even though none
of the local cost functions is convex, as proved in Theorem 2.

In (17), the effect of connectivity on the algorithm is
represented by λmin(hβKL̃). In the first problem, this value
is 0.98λL. Whereas, for PI consensus without precondition-
ing [4], this value is 0.1λL. Thus, introducing K increases
the “effective connectivity” of G, which helps in faster
consensus of the proposed algorithm (Fig. 1(c)).

V. CONCLUSION

For the first time, we presented convergence guarantee
at an exponential rate of the PI consensus algorithm for



(a) aggregate cost (b) norm of gradient of aggregate cost (c) consensus term

Fig. 1: Comparison of different distributed optimization algorithms for solving the problem from [3, Section VI].

(a) aggregate cost (b) norm of gradient of aggregate cost (c) consensus term

Fig. 2: Comparison of different distributed optimization algorithms for solving binary logistic regression on MNIST dataset.

cumulative cost functions satisfying smoothness and the
RSI condition, without requiring convexity. Using Lyapunov
stability theory, we proved the convergence of this algo-
rithm in the continuous-time domain and obtained its rate-
matching discretization. Further, we introduced a local pre-
conditioning technique, locally computed by each agent, to
accelerate the PI consensus algorithm. We demonstrated the
efficacy of the proposed pre-conditioning compared to the
existing distributed optimization algorithms, especially for
ill-conditioned problems.
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