
Optimizing Multi-Robot Task Allocation in Dynamic
Environments via Heuristic-Guided Reinforcement

Learning

Aritra Pala, Anandsingh Chauhana, Mayank Baranwala, b,* and Ankush Ojhac

aTata Consultancy Services Research, Mumbai
bIndian Institute of Technology, Bombay

cErnst & Young LLP, Gurugram

Abstract. In modern warehousing environments, efficient task al-
location among multiple robots is crucial for optimizing productiv-
ity and meeting the ever-increasing demands of online order fulfill-
ment. In this paper, we address the challenging problem of real-time
multi-robot task allocation (MRTA) in a warehouse setting, where
tasks appear dynamically with corresponding start and end locations.
The objective is to minimize both the total travel distance of robots
and the delay in task execution while considering practical charg-
ing/discharging constraints and collision-free navigation. To tackle
this combinatorially hard problem, we propose a heuristic guided re-
inforcement learning (RL) agent, HeuRAL-MATE, which learns to
prioritize prompt task execution while optimizing the assignment of
tasks to robots. Our proposed approach outperforms standard prac-
tices like First-In-First-Out (FIFO), as well as a brute-force optimal
approach in terms of efficiency and performance. The results on mul-
tiple synthetic datasets exhibit an average cost reduction of approx-
imately 8.58% and 10.74% in total expenses when compared with
brute-force optimal approach and FIFO, respectively.

1 Introduction

Multi-robot systems in a cooperative environment find applications
in several domains, including but not limited to search and res-
cue operations [22], precision agriculture [6], warehouse automa-
tion [13, 10], construction [24], environmental monitoring [18], and
transportation and logistics [7]. Such systems are characterized by
availability of multiple robots collaborating to achieve common ob-
jectives, and offer numerous benefits, such as scalability, efficiency,
and fault-tolerance.
Combinatorial complexity in warehouse environments Automat-
ing warehouse operations through the utilization of multi-robot sys-
tems engenders a unique spectrum of challenges rooted in the com-
plexities of the spatial layout, the diverse range of tasks, the het-
erogeneity of robot capabilities, and the imperative for safe robotic
navigation [4, 28]. From a broader perspective, these challenges can
be categorized under three primary objectives: (a) Path planning, (b)
Real-time robot assignment, and (c) Task allocation. While these ob-
jectives are interdependent, each gives rise to a distinct array of sub-
problems that necessitate resolution, subsequently influencing the
comprehensive optimization of warehouse operations. For instance,

∗ Corresponding Author. Email: baranwal.mayank@tcs.com.

the requisites of effective path planning encompass the generation of
collision-free trajectories, encompassing both static obstacles and the
trajectories of other in-motion robots. Moreover, the physical con-
straints of robots, such as their state of charge (SOC), must also be
factored in. In parallel, within the dynamic milieu of a warehouse,
real-time task generation becomes imperative, precluding a priori
knowledge. This injects complexities into the planning process, re-
quiring the prioritization of tasks based on their generation time,
anticipated completion timeframe while considering the concurrent
execution of pre-assigned tasks, and the minimization of collective
robot travel distances.

Furthermore, the immediate allocation of robots to tasks requires
a seamless and continuous distribution of assignments, regardless of
whether robots are available or already occupied. This requirement
highlights the need for instant coordination across multiple goals, all
while upholding a variety of distinct physical and task-related lim-
itations. In essence, the intricate interplay of these challenges em-
phasizes the vital importance of a refined and flexible multi-robot
framework. Such a framework must possess the capacity to system-
atically handle the nuances of path planning, real-time robot assign-
ment, and task allocation within the dynamic landscape of an auto-
mated warehouse environment. Neglecting the interconnectedness of
diverse subtasks leads to suboptimal outcomes.
Motivating example This study is driven by the goal of optimizing
end-to-end operations within a typical sorting center (Figure 1). In-
coming packages must be efficiently directed from conveyor belts
to designated pickup trucks situated across the warehouse. These
packages are stored in bins at conveyor ends, and as bins approach
full capacity, robots are tasked with emptying them near assigned
pickup points. Additionally, robots can be assigned to move empty
bins closer to conveyor belts. Amidst these tasks, robots must nav-
igate without collisions, maintain adequate energy levels, and dock
for recharging if needed. Real-time package arrivals render offline
optimization of robot assignments and task selection challenging
when confronted with multiple pending tasks. Furthermore, address-
ing charging constraints is often disregarded in existing warehouse
management literature. In real-time decision-making, brute-force
or simulation-based approaches evaluating all assignment scenarios
prove impractical and inefficient for such systems.
Why RL? The complex interplay among diverse subtasks, combined
with the real-time influx of tasks and the varying state of charge

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240705

1911

(SOC) of robots, accentuates the limitations of existing warehouse
management strategies. The typical warehouse environment is char-
acterized by its dynamic nature, necessitating a real-time, sequential
decision-making approach for effective optimization. In this context,
RL emerges as the optimal choice, given its ability for handling such
scenarios. Furthermore, RL can adeptly learn to optimize its task se-
lection procedure in conjunction with other heuristic policies, such
as space-time A∗ [26], alongside a greedy approach for robot selec-
tion and charging. Hence, the optimization of task selection occurs
in tandem with existing operational policies, rather than in isolation.

Figure 1. Schematic of a typical warehouse

Statement of Contributions In this study, we present an innovative
approach called HeuRAL-MATE, which combines heuristic guidance
with RL to address the multi-robot task allocation challenge in ware-
house environments. HeuRAL-MATE effectively manages real-time
task selection, the allocation of tasks to robots, and the secure nav-
igation of robots, all while considering constraints related to robot
charging and specific task requirements. Notably, it boasts scalabil-
ity, seamlessly accommodating any quantity of robots and task fre-
quencies. Below, we outline the primary contributions.
1. Real-time warehouse management under practical constraints

Contemporary warehouse management research frequently relies on
impractical assumptions, like assuming robots never collide, are al-
ways instantly available for tasks, or never discharge. Our study
presents a holistic framework that eliminates these assumptions. We
optimize task selection to improve decision-making throughout all
process stages, employing efficient heuristics to address practical
constraints. The task selection module, based on RL, is trained to
act optimally in tandem with these heuristics, facilitating coopera-
tive learning under realistic warehouse conditions. Our framework,
HeuRAL-MATE, thus ensures that the task selection carried out by
the RL agent is suitably influenced by the performances of concur-
rently employed heuristic policies. To the best of our knowledge,
this represents the first such effort that concurrently addresses all the
above constraints.
2. SOTA performance on diverse datasets We evaluate HeuRAL-
MATE on a variety of datasets comprising of dynamic task genera-
tion in a real sorting center1, and benchmark our approach against the
commonly employed FIFO-policy (aimed to minimize delay in task
execution post generation), and a brute-force optimal policy (a brute-
force approach aimed to minimize the total travel distance over short

1 name withheld due to NDA

horizon). The datasets are generated under several practical scenarios
including distributional shift in task generation, variable number of
robots, and SOC considerations. HeuRAL-MATE significantly out-
performs standard policies in all these scenarios while maintaining
the least execution time.
3. Post-hoc analysis and insights We demonstrate that the optimal
policy acquired through HeuRAL-MATE strikes a balance between
two advantageous aspects. It gives priority to minimizing task execu-
tion delays, while simultaneously developing the capability to reduce
the overall travel distance.

2 Preliminaries

2.1 States, Actions and Rewards
The problem of MRTA in dynamic warehouse environment settings
can be modeled as a Markov Decision Process (MDP) [21]. An MDP
is denoted by the tuple 〈S,A,PA, r〉, where S and A represent the
finite set of states and actions, respectively. For each s, s′ ∈ S, the
transition probability from s → s′ under the effect of an action a ∈
A, is denoted by pa(s, s

′) ∈ PA. Finally, the step-reward associated
with each state-action pair (s, a) is depicted by r(s, a). Below, we
summarize the set of all possible states, actions and reward in the
context of warehouse management.
States At each time step, the comprehensive state of the dynamic
warehouse environment necessitates the inclusion of information
pertaining to tasks and robots. Incoming tasks are immediately stored
in a buffer, creating a limited-size look-ahead (LA) queue in a FIFO
fashion. The RL agent is trained to optimally select tasks from this
queue based on the current environment state. Designated as st ∈ S
at time-step t, the environment’s state encompasses task attributes in-
cluding their source and destination coordinates, navigation duration
between them obtained via the standard A∗-type algorithm, and the
time of task appearance in the environment’s LA. Furthermore, robot
features entail their positions, the time at which an engaged robot
becomes free for executing subsequent tasks, and their charge levels.
Actions The planner’s main objective is to enhance task assignment,
thereby minimizing total operational time. Accordingly, the planner’s
actions encompass systematic task selection from the queue. This se-
quential selection reduces both the overall operational expenses and
the task completion time.
Rewards The step reward attributed to a task-action pair encom-
passes three distinct components. The initial component is calculated
based on the time it takes for the robot to travel from its current
position to the task’s starting point, termed as travel time to origin
(TRTO). The second facet is the time gap between task arrival in
the LA and the robot’s initiation of execution, denoted as the total
time gap for the task (TTGT). Additionally, the step reward incor-
porates a third element that enforces penalties for tasks lingering in
the queue for extended periods. (see (1) for detailed mathematical
formulation). This reflects the real-world principle that tasks ideally
should not remain unattended for prolonged duration.

3 Related Works

Efficient MRTA and path planning within unmanned warehouses
lead to optimized order fulfillment, resource management, and
obstacle-free navigation, ultimately elevating warehouse productiv-
ity. Consequently, MRTA has garnered substantial interest, spanning
from heuristic-driven approaches to contemporary learning-based
methods in both centralized and distributed communication scenar-
ios over the last two decades [14]. One of the earlier works in [9]

A. Pal et al. / Optimizing Multi-Robot Task Allocation in Dynamic Environments via Heuristic-Guided Reinforcement Learning1912

examines a comparative analysis of SOTA multi-robot coordination
strategies within a domain-specific context. Current MRTA research
predominantly centers on two pivotal elements: (a) Model-driven op-
timization, as exemplified in [27], and (b) Communication-efficient
decentralized algorithms, illustrated by [5, 1].

The problem under consideration can be mapped to multi-agent
pickup and delivery (MAPD) problems addressed using both dis-
tributed approaches and centralized ones [17, 16, 23, 29]. But, Most
existing literature focuses on offline MAPD. Our choice of learning-
based methods for online task allocation arises from the need for reli-
able solutions in dynamic environments where solving optimization
problems every time can be computationally prohibitive.

Driven by the recent achievements of deep RL in solving intricate
dynamic challenges, a current trend is emerging to embrace learning-
based approaches to manage the complexities of warehouses [30, 1,
2]. These learning strategies target various facets of end-to-end ware-
house management. For instance, in [30], a Q-learning framework
emphasizes generating collision-free, secure paths for multi-robot
systems. Conversely, the RL framework in [1, 2] focuses on opti-
mal task selection, neglecting task-to-robot assignment under the as-
sumption of constant robot availability post-selection. Additionally,
the authors leverage A∗ coupled with optimal reciprocal collision
avoidance (ORCA) [3] for collision-free navigation at the low-level
path planning stage.

However, as previously discussed, most SOTA learning-based
warehouse management approaches, including the mentioned refer-
ences, overlook a key benefit of RL-namely, the possibility of in-
tegrating of multiple echelons of warehouse management during the
training phase of RL. For instance, the learned policy of the RL-agent
in [1, 2] is limited in its applicability to realistic warehouse scenarios
due to the neglect of constraints related to robot availability and state
of charge (SOC). Apart from that, they aim for a seamless sequen-
tial flow of tasks without considering their generation times. Like-
wise, the authors in [20] utilize a cooperative multi-agent RL frame-
work under the assumption of robots never colliding. In our study,
we integrate task arrival times to ensure the timely execution of tasks
by amalgamating practical considerations, such as robot availability,
SOC and generating collision-free paths, performance under distri-
bution shifts and variable-sized fleet. Moreover, within our frame-
work, the reward structure is meticulously crafted to achieve an opti-
mal balance between prompt task allocation and the shortest possible
execution duration for the allocated tasks. This is achieved by har-
monizing efficient heuristics with the RL agent. The approach also
ensures competitive runtime during the deployment phase, catering
to real-time task selection and allocation via HeuRAL-MATE.

4 Our approach: HeuRAL-MATE

In this section, we present HeuRAL-MATE (see Algorithm 1), a
novel heuristic guided RL framework designed for optimizing MRTA
within dynamic warehouse settings. The generation of tasks occurs
in real-time, initially populating a task buffer. The planner (RL agent)
has access to a small LA queue of tasks. When a task from the LA,
visible to the RL agent, is assigned to a robot for execution, a new
task from the buffer enters the LA, making it available for selection
by the RL agent. Upon task allocation from the LA queue, if no new
tasks are available in the buffer for inclusion in the LA, the task with
the longest duration of stay in the LA is duplicated to ensure a con-
sistent LA length. This increases the probability of its selection by
the RL agent in subsequent steps. In an exceptional scenario where
both the LA and the task buffer are empty, HeuRAL-MATE waits for

a task to appear in the environment. This process of action selection,
revolves around task choice, unfolds across three hierarchical levels:
(a) At each instant t, the RL agent picks a task from the LA for as-
signment to one of the robots, guided by the prevailing environmen-
tal state. Importantly, the RL agent doesn’t wait for robots to become
available before engaging in task selection, as the state information
includes time markers denoting when robots will be free.
(b) Upon task selection, a heuristic-guided framework comes into
play, facilitating the identification of the most suitable robot for task
execution. This determination considers the positions of all robots
post completion of their ongoing assignments, the times they become
available, and their SOCs.
(c) To direct the robot’s movement, a lower-level navigation algo-
rithm, such as Space-Time A∗ [26] is utilized to guide the robot
from its current position to the task’s starting point and subsequently
to the destination, ensuring collision avoidance with both stationary
and moving obstacles (and other robots).

Our study tackles both (a) non-charging and (b) charging scenarios
in dynamic warehouse settings. In the charging scenario, we account
for the unique behavior of robots that do not discharge while sta-
tionary but discharge at a steady rate during motion. When a robot’s
charge falls below a predefined threshold (charging threshold), it
navigates to the nearest available charging dock for recharging. The
threshold is carefully calibrated to ensure that it enables the robot
to reach the nearest charging dock from any location on the grid.
During task assignment, we compare the robot’s current battery level
with the anticipated charge required to complete the task against this
threshold. This guarantees that the robot will always fulfill its as-
signed tasks without facing any issues related to insufficient battery
levels. In the simplified non-charging scenario, we assume that robots
consistently maintain charge levels above the charging threshold.

4.1 Proximal Policy Optimization (PPO)-guided
Reinforcement Learning framework

In order to learn to perform optimal sequential decision making, we
train an on-policy PPO [25] agent with a prioritized replay buffer de-
fined over the set of environment states. The state of the agent con-
sists of the features related to tasks in the LA (denoted by P) as well
as set of robots (R). The agent’s state, denoted as st ∈ S at time-step
t, encompasses the following components: (a) origin coordinates of
tasks {oi}, (b) destination coordinates of tasks {di}, (c) distance in-
formation between task origin and destination {ki}, computed using
the standard A∗ method, (d) timestamp of task appearance in the LA
queue {li}, (e) robot coordinates {pj}, (f) robot availability and the
anticipated time for ongoing task completion {rj}, (g) robot charge
percentage {cj}. Features (a)-(d) are task-specific features and col-
lectively have a dimensionality of 6 for each task. Conversely, fea-
tures (e)-(g) are linked to robot-specific attributes, constituting a di-
mensionality of 3 for setups without charging considerations and 4
for the ones with charging constraints.

Let (xoi , yoi) and (xdi , ydi) represent the origin and destination
coordinates of the ith-indexed task. Similarly, (xrj , yrj) indicates
the current position of robot j, which can vary based on whether the
robot is idle, performing tasks, or at a charging location for recharg-
ing if needed. Additionally, we introduce tstampi , texeci , and twaiti to
denote the time when task i appears in the task allocation (referred to
as LA), the time at which its execution begins, and the waiting time
for a robot to start executing the task after completing other preas-
signed tasks, respectively. In each decision-making step, we use the
variable allotT to signify the index of the selected task which then

A. Pal et al. / Optimizing Multi-Robot Task Allocation in Dynamic Environments via Heuristic-Guided Reinforcement Learning 1913

Figure 2. HeuRAL-MATE Architecture with trainable weights denoted by {Wk}

gets assigned to a robot selR. Furthermore, we utilize the function
d[(xa, ya), (xb, yb)] to calculate the A∗ distance between two points
(xa, ya) and (xb, yb) within our system. The step reward for training
the PPO agent is:

Rstep = −d[(xrselR , yrselR), (xoallotT , yoallotT)]

−α ∗ (texecallotT − tstampallotT)− β ∗ Penalty, (1)

where, Penalty =

{
p, if twaitallotT > tthreshold

0, otherwise
,

imposes a penalty of p in cases where a task indexed as allotT
remains in the LA for a duration exceeding a specified threshold
tthreshold. The coefficients α and β represent positive constants. The
first term in (1) correspond to TRTO, while the second term is asso-
ciated with TTGT, (see Section 2.1).

4.2 Robot Selection Heuristic
The decision at the second level entails the selection of a robot to ex-
ecute designated tasks once the robot becomes free. To achieve this,
we have adopted a simple heuristic based approach where we calcu-
late the execution time for all the existing robots. The robot selected
for a particular task is the one capable of completing the task earli-
est. There is a possibility that a robot, even if immediately available
but located farther away, might not be able to promptly finish the
task. As a result, we employ a comprehensive heuristic to ascertain
the most suitable robot for task execution (see selectRobot(·)
in Algorithm 1).

4.3 Navigation Algorithm : Space-Time A*
In a real-world warehouse environment, a substantial fleet of robots
is deployed. The primary operational challenge emerges when cal-
culating collision-free paths. In our work, we integrate space-time
A∗ [26] for dynamic collision avoidance.

5 Experiments

5.1 Datasets and Experimental Setup
The dynamic warehouse environment comprises several critical pa-
rameters that govern its efficient operation. To evaluate our RL-based
model, we utilize synthetic data due to the absence of publicly ac-
cessible real-world datasets for comparable problem instances. Each
episode encompasses some τ time units, and the synthetic datasets
employed for training and evaluation are structured as square-shaped
2D grids within the range of [0, 64] × [0, 64]. The task origin and
destination, as well as robot locations, are within the above range. In

our experiments, the concentration of tasks is varied to capture spe-
cific time intervals during the day when majority of the tasks tend to
accumulate. Accordingly, we generate datasets using Gaussian dis-
tributions with varying means and standard deviations. The task’s
starting and ending coordinates, along with task generation times,
are disclosed to the planner using a limited-size LA. The dataset also
includes initial charge levels and locations of charging docks.

In this work, we investigate four unique combinations:
(1) Non-charging + Normally distributed task arrival times
(2) Charging + Normally distributed task arrival times
(3) Non-charging + Uniformally distributed task arrival times
(4) Charging + Uniformally distributed task arrival times

Within each of the four configurations, datasets containing ap-
proximately 500 tasks per episode are generated following the cor-
responding distributions. As an illustration, in the case of normally
distributed tasks, task generation times adhere to N (600, 50), with
600 denoting the mean task generation time. We first consider a fleet
of 10 robots, and the LA length is fixed at 5. The robots’ permissible
charging threshold is established at 30%, signifying that robots with
a SOC below 30% must dock for recharging before resuming task
execution. The steady charging rate for the robots is calibrated to be
16 times the discharging rate.

Figure 3. Learning curves of the HeuRAL-MATE

5.2 Neural Network Architecture and Training

The RL agent employs a novel PPO-based framework to facilitate
online task selection. This model architecture inspired from [2] is
distinctly structured into three core segments (see Figure 2):
• Feature Extraction Layers This initial component involves the
procedure of feature extraction, particularly focusing on attributes
related to robots and tasks. The embedding for robot attributes is cre-
ated using a sequence of four linear layers of dimensions [Input, 16,

A. Pal et al. / Optimizing Multi-Robot Task Allocation in Dynamic Environments via Heuristic-Guided Reinforcement Learning1914

Algorithm 1: HeuRAL-MATE

Initialize policy parameters θ0, value function parameters φ0

for episodes k = 0, 1, 2, · · ·K do

Step t=0
State st := {(oi, di, ki, li)∀i∈P , (pj , rj , cj)∀j∈R}
Each robot j ∈ R is executing a task (oj , dj)
while True do

Update pj ∀j ∈ R using space-time A∗

if pj == dj then

if cj < charging threshold for some j ∈ R then
Robot j navigates to closest available
charging dock for recharging

end if

if model is in training mode then
run policy πk = π(θk) in the environment to

select a task i ∈ P as action
else

RL-policy takes state st as input and selects a
task i ∈ P as action

end if

selR = selectRobot(oi, di)

end if

t ← t+ 1

end while

if model is in training mode then

Collect set of trajectories Dk

Compute rewards-to-go R̂t

Compute advantage estimates Ât based on the current
value function Vφk

Update policy by maximizing PPO-Clip objective:
θk+1 =

argmax
θ

1
|Dk|T

∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk

(at|st)A
πθk (st, at),

g(ε, Aπθk (st, at))

)

via stochastic gradient ascent with Adam
Fit value function by regression on MSE:

φk+1 = argmin
φ

1
|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vφ(st)− R̂t

)2

via gradient descent
end if

end for

function selectRobot(oi, di):
Calculate estimated completion time of task i by each

robot j ∈ R, store them in array Ai

selR = argminj∈RAi

return selR
end function

16, 1]. Here, the Input is 3 for scenarios excluding charging consid-
erations, and 4 for scenarios involving charging constraints. Concur-
rently, embeddings related to task attributes are generated using a
similar sequence of four linear layers of dimensions [6, 16, 16, 1].

Let FR
j and FP

i represent the feature vectors for the robot j ∈ R
and the ith-task, then the associated embeddings are defined as:

ER
j = WR2 ∗ ReLU(WR1 ∗ FR

j)

EP
i = WP2 ∗ ReLU(WP1 ∗ FP

i)

• Concatenation and Transformation The second module trans-
forms the extracted embeddings by concatenating the embeddings
of robots and tasks. Subsequently, the concatenated feature is chan-
nelled through a linear layer boasting 48 input neurons and 8 output
neurons with ReLU activation. Mathematically we have

aR
j = Sigmoid(WR4 ∗ Tanh(WR3 ∗ ER

j))

aP
i = Sigmoid(WP4 ∗ Tanh(WP3 ∗ EP

i))

Output =
(∑

ER
j ∗ aR

j ,
∑

EP
i ∗ aP

i , E
P
i

)

• Final Layer Comprising a linear layer, this element operates with
8 input neurons and 1 output neuron.

TaskAllocated = Categorial(W2 ∗ ReLU(W1 ∗ Output))

The model is implemented using the PyTorch library in
Python 3.8, with an Adam optimizer [15], a discount factor at 0.99,
lambda value of 0.95, learning rate of 0.0003, entropy coefficient of
0.001, value function coefficient of 0.0002, and a batch size of 32.
The policy network is trained employing the cross-entropy loss func-
tion, whereas the value network is fine-tuned via an MSE loss metric.

5.3 Baselines
It is crucial to re-emphasize that, to the best of our knowledge, there
is no existing work in the literature that concurrently addresses mul-
tiple aspects of MRTA. In the absence of any known approaches, we
present two strong baselines:
• Brute-force optimal where all task-robot pairs (within the LA) un-
dergo a brute-force evaluation of time duration required for task ex-
ecution by the robots, determined using the standard A∗ navigation
algorithm. Subsequently, the algorithm selects the robot-action pair
that minimizes this time duration. Consequently, while brute-force
optimal approach represents a locally optimal solution, the brute-
force evaluation significantly amplifies the run-time, posing practical
challenges. The brute-force optimal baseline is frequently adopted in
literature as a reference point for evaluating decoupled task alloca-
tion and navigation methodologies [19, 1].
• FIFO The FIFO baseline employs a dual-tiered decision frame-
work. Initial allocation entails selecting the task that joined the LA
queue earliest. The goal is to reduce pending tasks within the LA
queue and minimize the time gap between task arrival and robot-
initiated execution (TTGT) [12, 11]. Due to its simplicity, the FIFO
approach requires the least execution time among all the considered
approaches.

5.4 Experiments and Results
In this section, we present a comprehensive comparative analysis of
our proposed learning-based framework, HeuRAL-MATE, in com-
parison with baseline methods, specifically the brute-force optimal
approach and the FIFO strategy. The fundamental logic for robot se-
lection remains consistent across both the learning-based policy and
the baseline strategies. Our experiments encompass scenarios with
and without charging considerations, effectively addressing real-
world operational challenges. The results consistently highlight the
superiority of HeuRAL-MATE over the baseline methods.

Figure 3 illustrates the average training curve for the RL approach.
This average is computed from four distinct runs utilizing random
initial seeds. The RL model undergoes 300 training episodes, each

A. Pal et al. / Optimizing Multi-Robot Task Allocation in Dynamic Environments via Heuristic-Guided Reinforcement Learning 1915

Table 1. Cost (×103) evaluation on various test datasets with 5 tasks in LA, 10 robots & 505 tasks per episode (the lower the better)

Training with
Gaussian
dist. data

Test distibution Charging Non-Charging

HeuRAL-MATE Brute-force
optimal FIFO HeuRAL-MATE Brute-force

optimal FIFO

Similar

28.81 ± 0.08 29.18 32.69 24.36 ± 0.29 27.01 27.63
28.98 ± 0.24 30.91 31.40 25.83 ± 0.14 26.83 27.88
28.61 ± 0.35 30.92 31.36 26.41 ± 0.22 28.38 28.77
28.32 ± 0.25 29.21 31.69 24.80 ± 0.44 26.70 27.92
28.62 ± 0.23 29.82 31.69 26.73 ± 0.59 28.03 28.48

Moderately
Different

28.44 ± 0.62 29.22 31.19 25.29 ± 0.09 27.29 27.36
29.99 ± 0.82 31.20 31.74 25.81 ± 1.01 26.39 28.38
30.32 ± 0.57 31.37 31.99 26.79 ± 0.50 27.55 29.51
28.79 ± 0.48 31.11 31.61 24.79 ± 0.05 26.43 26.98
29.57 ± 0.18 32.40 33.67 26.50 ± 0.17 27.28 29.27

Totally
Different

29.01 ± 0.45 30.34 31.74 25.78 ± 0.20 27.79 28.30
29.04 ± 0.46 30.87 32.75 26.65 ± 0.11 27.75 28.63
31.02 ± 2.02 31.72 33.56 27.31 ± 0.05 28.81 29.93
29.18 ± 0.93 31.48 33.02 25.84 ± 0.32 26.27 27.89
29.02 ± 2.04 28.95 33.30 27.57 ± 0.34 29.02 29.17

Training with
uniform data

Similar

29.90 ± 1.18 30.29 33.21 27.41 ± 0.07 28.81 29.93
28.81 ± 0.76 31.55 31.80 25.62 ± 0.33 26.27 27.89
29.70 ± 1.08 32.12 33.19 26.73 ± 0.03 29.02 29.17
29.57 ± 0.83 31.34 33.19 26.53 ± 0.75 28.65 27.88
28.07 ± 0.91 30.40 31.97 26.53 ± 0.01 27.50 27.58

Different

28.87 ± 0.14 27.96 31.77 25.11 ± 0.14 27.01 27.63
30.13 ± 0.85 30.70 31.61 25.98 ± 0.17 26.83 27.88
28.65 ± 0.15 31.68 32.06 24.84 ± 2.20 28.38 28.77
28.02 ± 0.28 30.91 31.40 25.46 ± 0.20 26.70 27.92
30.26 ± 0.79 31.39 33.23 26.50 ± 0.16 25.63 27.88

Avg run-time (s/task) 0.17 0.88 0.15 0.14 0.79 0.13

Table 2. Cost (×103) comparison on Gaussian distributed data for
charging scenario with 5 tasks in LA, 10 robots & 505 tasks/episode

Avg TRTO Avg TTGT + Delay Penalty

HeuRAL-
MATE

Brute-force
optimal FIFO HeuRAL-

MATE
Brute-force

optimal FIFO

12.30 10.80 12.25 16.47 18.38 20.43
12.05 10.28 12.51 16.93 20.63 18.89
12.34 10.98 12.22 16.27 20.00 19.15
12.43 11.15 12.31 15.89 18.06 19.37
12.51 10.31 12.34 16.11 19.51 19.35

Table 3. Cost (×103) evaluation on Gaussian distributed dataset
(charging) with 5 tasks in LA, 20 robots & 505 episodic tasks

HeuRAL-MATE Brute-force
optimal FIFO

Gaussian dist. data

20.60 22.13 22.35
21.73 21.84 22.61
20.95 21.65 21.99
20.61 22.01 22.10
21.60 22.79 23.38

encompassing 505 tasks with 10 robots in the environment and LA
length 5. This training employs the PPO-based RL algorithm within
the PFRL [8] framework. The training procedure utilizes randomly
generated task lists sampled from Gaussian distribution to mirror
real-world task profiles, alongside uniformly sampled task lists. Sep-
arate models are trained for both robot charging and non-charging
scenarios using both datasets. The reward plots illustrate the stable
convergence of HeuRAL-MATE towards a favorable optimal policy.
Enhancements in rewards compared to initial values indicate pro-
ficient task selection and allocation to robots, leading to decreased
waiting times for tasks within the look-ahead. It is important to note
that the RL agent is trained using a random task list periodically, pre-

Table 4. Cost (×103) evaluation on Gaussian distributed dataset
(charging) with 5 tasks in LA, 15 robots & 505 episodic tasks

HeuRAL-MATE Brute-force
optimal FIFO

Gaussian dist. data

24.05 25.20 26.19
24.01 24.53 26
23.44 24.95 26.44
24.78 25.61 26.79
24.32 25.32 26.17

Table 5. Cost (×103) evaluation on Gaussian distributed dataset
(charging) with 5 tasks in LA, 10 robots & 255 episodic tasks

HeuRAL-MATE Brute-force
optimal FIFO

Gaussian dist. data

14.73 ± 0.15 14.96 15.81
14.45 ± 0.45 14.71 15.67
14.86 ± 0.90 14.88 15.75
14.45 ± 0.21 15.33 15.99
14.07 ± 0.56 14.53 14.97

venting it from merely memorizing performance on a particular task
list. Instead, it learns to adeptly adapt to various scenarios. This ex-
plains the minor fluctuations in rewards across episodes, even as the
agent develops a steady policy.

Following the training phase, the model’s performance is evalu-
ated across various test datasets. For the model trained on task lists
adhering to a specific Gaussian distribution, the assessment encom-
passes four distinct datasets: (a) instances analogous to the training
data with the same mean and variance, (b) datasets displaying ±30%
variations, termed moderate variation, and (c) testing on an entirely
distinct uniformly generated dataset. This evaluation aims to mea-
sure HeuRAL-MATE’s performance in handling distributional shifts.
Meanwhile, the model trained on instances generated from a uniform

A. Pal et al. / Optimizing Multi-Robot Task Allocation in Dynamic Environments via Heuristic-Guided Reinforcement Learning1916

Table 6. Cost (×103) evaluation on Gaussian distributed dataset
(charging) with 5 tasks in LA, 10 robots & 1005 episodic tasks

HeuRAL-MATE Brute-force
optimal FIFO

Gaussian dist. data

58.57 ± 0.37 62.15 65.89
56.47 ± 0.17 61.39 64.78
58.54 ± 0.32 60.41 66.49
57.69 ± 0.44 63.44 67.23
56.70 ± 0.10 60.17 63.64

distribution is evaluated using two separate test datasets: (a) dataset
sampled from same distribution and (b) dataset generated using a
Gaussian distribution, providing insights into its capabilities under
distributional shift.

Table 1 presents a comprehensive comparison of the test results. It
is noteworthy that the total number of tasks in the entire episode, the
number of deployed robots, and the length of the LA queue remain
consistent with the training phase, specifically 505 tasks, 10 robots,
and an LA length of 5. The results underscore HeuRAL-MATE’s
consistent outperformance over brute-force optimal and FIFO-based
methods across nearly all test scenarios. Only in a couple of instances
does the brute-force approach marginally surpass HeuRAL-MATE.
These cases involve uniformly distributed task arrival times through-
out the episode, where the brute-force optimal approach, with brute-
force evaluations at any point, proves to be a potent heuristic. Addi-
tionally, Table 1 provides execution time details, further confirming
the efficiency of HeuRAL-MATE in handling large order volumes
within notably brief timeframes. This highlights HeuRAL-MATE’s
adaptability to dynamic variations in task management and its ef-
fective handling of substantial volumes of online orders, exhibiting a
total cost improvement of 8.58% and 10.74% compared to the brute-
force optimal approach and FIFO heuristics, respectively.

To comprehend the superiority of HeuRAL-MATE over other
baselines, we scrutinize the distinct reward components of all ap-
proaches as outlined in Table 2 for the first five test scenarios from
Table 1. The total cost (reward) comprises two primary elements:
(a) TRTO, which focuses on reducing robot travel distance, and (b)
TTGT, which prioritizes minimizing task execution delays. As ev-
ident from Table 2, the brute-force optimal approach excels (lower
value) in the TRTO component compared to HeuRAL-MATE, as
the brute-force optimal baseline employs brute-force calculations to
choose robot-task pairs that minimize total travel distance for exe-
cuting LA tasks. However, due to its lack of emphasis on minimizing
delays for existing LA tasks, the brute-force optimal approach has a
notably higher TTGT component. Conversely, FIFO, despite its se-
quential task assignment, might still not effectively reduce the TTGT
component. This is because assigned task endpoints could be distant
from the starting locations of subsequent tasks in the LA, potentially
leading to inherent execution delays. Notably, the TRTO component
is bound to be larger than the brute-force optimal approach.
Variable number of robots: To evaluate the generalizability of
HeuRAL-MATE, we conduct experiments involving varying num-
bers of robots and tasks during inference. Initially, our model is
trained for a fleet comprising 20 robots, and we present the results
of this training in Table 3. Subsequently, we assess the performance
of the trained RL agent in scenarios where only 15 robots are avail-
able without having to retrain the model. This is readily achieved by
artificially assigning extremely large values to the parameter twait for
the additional 5 robots, effectively preventing any task allocation to
these 5 robots. This approach enables us to generalize our framework
to accommodate various robot quantities without the need for model
retraining. The results for the 15-robot scenarios are presented in Ta-

ble 4. As anticipated, executing the same task set with fewer robots
incurs additional costs. Nevertheless, HeuRAL-MATE consistently
outperforms baseline approaches in all scenarios.
Variable number of tasks: We now evaluate the HeuRAL-MATE
agent trained for a fleet of 10 robots and 505 tasks (Table 1) on vari-
able number of tasks - (a) 255 tasks (see Table 5), and (b) 1005 tasks
(see Table 6). It can be seen that HeuRAL-MATE consistently out-
performs the baselines for variable number of tasks without requiring
model retraining.

Despite common intuition, brute-force optimal approach is one of
the strongest baselines which, given the causal state of the environ-
ment, evaluates all possible task-robot pairs and optimally selects the
suitable pair for subsequent execution. As such, this approach is com-
putationally exhaustive and does not scale well with the number of
robots or LA length. Moreover, the approach is greedily optimal and
it is difficult for most algorithms to outperform it. The reason why
HeuRAL-MATE is able to outperform it is due to non-adherence
of brute-force optimal in ensuring that tasks do not remain in the
LA beyond a threshold which results in a penalty, and the fact that
HeuRAL-MATE exploits the underlying distribution defining task
generation to plan for tasks to appear in future despite it having ac-
cess to the same causal information as brute-force optimal.

6 Conclusion, Limitations and Future Work

This study introduces HeuRAL-MATE, a novel heuristic-guided RL
framework, aimed at improving multi-robot task allocation in mod-
ern warehousing. The approach optimizes operational costs and effi-
ciency, addressing the increasing demands of online orders. Through
an optimal sequential task selection process, coupled with a robot se-
lection heuristic and a collision-free navigation algorithm, HeuRAL-
MATE significantly outperforms baseline methods across diverse test
datasets. In future, we plan to integrate a learning-based cooperative
path-planning framework into decision-making.

While our HeuRAL-MATE algorithm presents a promising ap-
proach, it is essential to acknowledge certain limitations that warrant
attention in future research endeavors:
1. Single-Task Assumption: The algorithm currently assumes that
robots are engaged in one task at a time, potentially limiting its ap-
plicability in scenarios where multitasking is prevalent.
2. No Contingency for Sudden Breakdowns: The model does not
account for the sudden breakdown of a robot during operation. Once
a task is allocated, our algorithm lacks the capability to reconsider or
revert the decision in the event of an unforeseen robot malfunction.
3. Homogeneous Robots: We have made the simplifying assump-
tion that all robots in the system are homogeneous, sharing identical
values of characteristics such as velocity, acceleration, and load ca-
pacity. This assumption may not reflect the diversity present in real-
world robot fleets.
4. Negligible Load/Unload Time Assumption: The algorithm as-
sumes negligible time for loading/unloading operations after a robot
reaches the task origin/destination. In reality, this may not hold true,
and accounting for realistic loading and unloading times is a consid-
eration for future enhancements.
5. Lack of Real World Environment Evaluation: Our algorithm’s
performance has been evaluated exclusively in simulated environ-
ments. The absence of validation in real-world settings, considering
all physical constraints that robots may encounter, is a notable limi-
tation.

Addressing these limitations in future iterations of our algorithm
will contribute to a more robust and applicable solution in diverse
operational scenarios.

A. Pal et al. / Optimizing Multi-Robot Task Allocation in Dynamic Environments via Heuristic-Guided Reinforcement Learning 1917

References

[1] A. Agrawal, S. Hariharan, A. S. Bedi, and D. Manocha. Dc-mrta: De-
centralized multi-robot task allocation and navigation in complex envi-
ronments. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11711–11718. IEEE, 2022.

[2] A. Agrawal, A. S. Bedi, and D. Manocha. Rtaw: An attention in-
spired reinforcement learning method for multi-robot task allocation in
warehouse environments. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 1393–1399. IEEE, 2023.

[3] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart. Optimal reciprocal collision avoidance for multiple non-
holonomic robots. In Distributed autonomous robotic systems: The 10th
international symposium, pages 203–216. Springer, 2013.

[4] A. Bolu and Ö. Korçak. Adaptive task planning for multi-robot smart
warehouse. IEEE Access, 9:27346–27358, 2021.

[5] Y. Chen, U. Rosolia, and A. D. Ames. Decentralized task and path plan-
ning for multi-robot systems. IEEE Robotics and Automation Letters, 6
(3):4337–4344, 2021.

[6] A. Dutta, S. Roy, O. P. Kreidl, and L. Bölöni. Multi-robot information
gathering for precision agriculture: Current state, scope, and challenges.
IEEE Access, 9:161416–161430, 2021.

[7] A. Farinelli, E. Zanotto, E. Pagello, et al. Advanced approaches
for multi-robot coordination in logistic scenarios. Robotics and Au-
tonomous Systems, 90:34–44, 2017.

[8] Y. Fujita, P. Nagarajan, T. Kataoka, and T. Ishikawa. Chainerrl: A deep
reinforcement learning library. Journal of Machine Learning Research,
22(77):1–14, 2021. URL http://jmlr.org/papers/v22/20-376.html.

[9] B. P. Gerkey and M. J. Mataric. Multi-robot task allocation: Analyzing
the complexity and optimality of key architectures. In 2003 IEEE inter-
national conference on robotics and automation (Cat. No. 03CH37422),
volume 3, pages 3862–3868. IEEE, 2003.

[10] M. Gini. Multi-robot allocation of tasks with temporal and ordering
constraints. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 31, 2017.

[11] R. Hassin and A. Nathaniel. Self-selected task allocation. Manufactur-
ing & Service Operations Management, 23(6):1669–1682, 2021.

[12] G. Humbert, M.-T. Pham, X. Brun, M. Guillemot, and D. Noterman.
Comparative analysis of pick & place strategies for a multi-robot ap-
plication. In 2015 IEEE 20th conference on emerging technologies &
factory automation (ETFA), pages 1–8. IEEE, 2015.

[13] B. Kartal, E. Nunes, J. Godoy, and M. Gini. Monte carlo tree search for
multi-robot task allocation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30, 2016.

[14] A. Khamis, A. Hussein, and A. Elmogy. Multi-robot task allocation: A
review of the state-of-the-art. Cooperative robots and sensor networks
2015, pages 31–51, 2015.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[16] M. Liu, H. Ma, J. Li, and S. Koenig. Task and path planning for multi-
agent pickup and delivery. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2019.

[17] H. Ma, J. Li, T. Kumar, and S. Koenig. Lifelong multi-agent path finding
for online pickup and delivery tasks. arXiv preprint arXiv:1705.10868,
2017.

[18] K.-C. Ma, Z. Ma, L. Liu, and G. S. Sukhatme. Multi-robot informa-
tive and adaptive planning for persistent environmental monitoring. In
Distributed Autonomous Robotic Systems: The 13th International Sym-
posium, pages 285–298. Springer, 2018.

[19] A. R. Mosteo and L. Montano. Comparative experiments on optimiza-
tion criteria and algorithms for auction based multi-robot task alloca-
tion. In Proceedings 2007 IEEE International Conference on Robotics
and Automation, pages 3345–3350. IEEE, 2007.

[20] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht. Bench-
marking multi-agent deep reinforcement learning algorithms in coop-
erative tasks. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks (NeurIPS), 2021. URL
http://arxiv.org/abs/2006.07869.

[21] M. L. Puterman. Markov decision processes. Handbooks in operations
research and management science, 2:331–434, 1990.

[22] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N. Gia,
H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund. Collabora-
tive multi-robot search and rescue: Planning, coordination, perception,
and active vision. Ieee Access, 8:191617–191643, 2020.

[23] O. Salzman and R. Stern. Research challenges and opportunities in
multi-agent path finding and multi-agent pickup and delivery problems.

In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1711–1715, 2020.

[24] G. Sartoretti, Y. Wu, W. Paivine, T. S. Kumar, S. Koenig, and H. Choset.
Distributed reinforcement learning for multi-robot decentralized collec-
tive construction. In Distributed Autonomous Robotic Systems: The 14th
International Symposium, pages 35–49. Springer, 2019.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[26] D. Silver. Cooperative pathfinding. In Proceedings of the aaai con-
ference on artificial intelligence and interactive digital entertainment,
volume 1, pages 117–122, 2005.

[27] C. Wei, Z. Ji, and B. Cai. Particle swarm optimization for cooperative
multi-robot task allocation: a multi-objective approach. IEEE Robotics
and Automation Letters, 5(2):2530–2537, 2020.

[28] S. Wilson, P. Glotfelter, S. Mayya, G. Notomista, Y. Emam, X. Cai, and
M. Egerstedt. The robotarium: Automation of a remotely accessible,
multi-robot testbed. IEEE Robotics and Automation Letters, 6(2):2922–
2929, 2021.

[29] Q. Xu, J. Li, S. Koenig, and H. Ma. Multi-goal multi-agent pickup
and delivery. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 9964–9971. IEEE, 2022.

[30] Y. Yang, L. Juntao, and P. Lingling. Multi-robot path planning based
on a deep reinforcement learning dqn algorithm. CAAI Transactions on
Intelligence Technology, 5(3):177–183, 2020.

A. Pal et al. / Optimizing Multi-Robot Task Allocation in Dynamic Environments via Heuristic-Guided Reinforcement Learning1918

