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Abstract: Distributed optimization has gained significant attention in recent years, primarily
fueled by the availability of a large amount of data and privacy-preserving requirements. This
paper presents a fixed-time convergent optimization algorithm for solving a potentially non-
convex optimization problem using a first-order multi-agent system. Each agent in the network
can access only its private objective function, while local information exchange is permitted
between the neighbors. The proposed optimization algorithm combines a fixed-time convergent
distributed parameter estimation scheme with a fixed-time distributed consensus scheme as its
solution methodology. The results are presented under the assumption that the team objective
function is strongly convex, as opposed to the common assumptions in the literature requiring
each of the local objective functions to be strongly convex. The results extend to the class
of possibly non-convex team objective functions satisfying only the Polyak- Lojasiewicz (PL)
inequality. It is also shown that the proposed continuous-time scheme, when discretized using
Euler’s method, leads to consistent discretization.
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1. INTRODUCTION

Over the past decade, distributed optimization problems
over a peer-to-peer network have received considerable
attention due to the size and complexity of the dataset,
privacy concerns, and communication constraints among
multiple agents (Lin et al., 2017; Pan et al., 2018). These
distributed convex optimization problems take the follow-
ing form:

min
x∈Rd

F (x) =

N∑
i=1

fi(x), (1)

where F (·) is the team objective function, and the con-
vex function fi : Rd → R represents the local objective
function of the ith agent, where i ∈ {1, 2, . . . , N} for
some positive integer N . Distributed optimization prob-
lems find applications in several domains including, but
not limited to, sensor networks, satellite tracking (Hu and
Shao, 2016), and large-scale machine learning (Nathan
and Klabjan, 2017). Distributed optimization problems
facilitate distributed coordination among the agents, as
well as minimization of the team objective function. Conse-
quently, these problems are inherently more complex than
other multi-agent control problems, such as, distributed
consensus.

In recent years, the use of continuous-time dynamical sys-
tems for distributed optimization has emerged as a viable
alternative (Lin et al., 2017; Pan et al., 2018; Feng and
Hu, 2017; Hu and Yang, 2018). This viewpoint enables
the use of tools from Lyapunov theory and differential
equations for the analysis and design of optimization pro-

cedures. It is worth mentioning that most of the existing
continuous-time schemes for distributed optimization are
only asymptotically (or exponentially at best) convergent.
On the other hand, most practical multi-agent optimiza-
tion tasks, such as distributed economic dispatch, often
undergo frequent changes in operating conditions, thereby
requiring the optima to be achieved in a finite time.

The notion of finite-time convergence in optimization is
closely related to finite-time stability (Bhat and Bernstein,
2000) in control theory. In contrast to asymptotic stability
(AS), finite-time stability is a concept that guarantees the
convergence of solutions in a finite amount of time. In (Lu
and Tang, 2012), a continuous-time zero-gradient-sum
(ZGS) with an exponential convergence rate was proposed,
which, when combined with a finite-time consensus proto-
col, was shown to achieve finite-time convergence in (Feng
and Hu, 2017). A drawback of ZGS-type algorithms is
the requirement of strong convexity of the local objective
functions and the choice of specific initial conditions xi(0)

for each agent i such that
∑N

i=1∇fi(xi(0)) = 0. In (Lin
et al., 2017), a novel continuous-time distributed optimiza-
tion algorithm, based on private (nonuniform) gradient
gains, was proposed for convex functions with quadratic
growth and achieved convergence in a finite time. A finite-
time tracking and consensus-based algorithm were recently
proposed in (Hu and Yang, 2018), which again achieves
convergence in a finite time under a time-invariant com-
munication topology.

Fixed-time stability (FxTS) (Polyakov, 2012) is a stronger
notion than finite-time stability (FTS), where the time of
convergence does not depend upon the initial condition.



To the best of our knowledge, distributed optimization
procedures with fixed-time convergence have not been
addressed in the literature for a general class of non-linear,
potentially non-convex, objective functions. The use of
FxTS theory for distributed optimization was first inves-
tigated in (Garg et al., 2020) where centralized optimiza-
tion problems were studied. The authors in (Wang et al.,
2020) further specialized it to the case of strongly convex
functions, however, at the expense of using a Hessian-
based (second-order) schemes that do not scale well with
the dimension d of the underlying state-space. Moreover,
the distributed protocol in (Wang et al., 2020) requires
each of the individual private objective functions to be
strongly convex. In the particular case of quadratic objec-
tive functions, the scheme proposed in (Garg et al., 2020)
can be suitably modified to incorporate both inequality
and equality constraints (Baranwal et al., 2020).

Despite growing interests in the use of continuous-time
dynamical systems towards distributed optimization with
fixed-time convergence guarantees, the existing literature
makes various simplifying assumptions, including but not
limited to, requiring agents to satisfy ZGS condition, use
of second-order (Hessian-based) optimization schemes, ne-
cessitating all private objective functions to be strongly
convex or with bounded growth, and existence of a time-
invariant communication topology. In addition, prior work
does not discuss how efficient their proposed methods are
during implementation using iterative, discrete methods.
It is worth noting that while continuous-time dynamical
systems are studied for ease of understanding the behavior
of an optimization algorithm, in practice, it is inevitable
to use a discrete-time, iterative method to solve optimiza-
tion problems. In view of the limitations stated above,
this paper presents a fixed-time convergent, distributed
optimization scheme that extend to a broad class of local
objective functions under relaxed assumptions on convex-
ity and information to be exchanged with the neighbors.

• We consider the problem of distributed optimization
of the sum of local objective functions, assuming that
only the global objective function is strongly convex.
• The results extend to a class of possibly non-convex

functions satisfying only the Polyak- Lojasiewicz (PL)
inequality. PL inequality is a relaxation of strong-
convexity and is popularly used to design exponen-
tially stable gradient-flows in the centralized opti-
mization problems (Garg and Panagou, 2020). To the
best of the our knowledge, this is the first work that
utilizes this condition in distributed optimization.
• We show that trajectories of dynamics obtained by

discretizing the proposed continuous-time dynamics
using Euler discretization converge to an arbitrarily
small neighborhood of the optimal point within a
fixed number of iterations, leading to a consistent
discretization. This is a rather significant result as it
bridges the gap between the continuous-time analysis
and discrete-time implementation.

A note on mathematical notations: We use R to
denote the set of real numbers and R+ to denote non-
negative real numbers. Given a function f : Rd → R,
the gradient at some point x ∈ Rd is denoted by ∇f(x).
∥x∥ denotes the 2-norm of x. G = (A,V) represents an
undirected graph with the adjacency matrix A = [aij ] ∈

RN×N , aij ∈ {0, 1} and the set of nodes V = {1, 2, · · · , N}.
The set of 1-hop neighbors of node i ∈ V is represented by
Ni, i.e., Ni(t) = {j ∈ V | aij = 1}. The second smallest
eigenvalue of a matrix is denoted by λ2(·). We define the
function signµ : Rd → Rd as

signµ(x) = x∥x∥µ−1, µ ≥ 0, (2)

with signµ(0) = 0. We use 1N , 0N ∈ RN to denote vectors
consisting of ones and zeros, respectively, of dimension N .

2. PROBLEM FORMULATION

2.1 Problem statement

Consider the system consisting of N nodes with graph
structure G = (A,V) specifying the communication links.
The objective is to find x∗ ∈ Rd that solves

min
x1,x2.··· ,xN

N∑
i=1

fi(xi),

s.t. x1 = x2 = · · · = xN .

(3)

In this work, we assume that the minimizer x∗ = x∗
1 =

x∗
2 = · · · = x∗

N for (3) exists and is unique. 1 We make the
following assumption on the inter-node communications.
Assumption 1. The communication topology between the
agents is connected and undirected.

To motivate the dynamical system approach considered,
let us first revisit the gradient decent (GD) method to
minimize an unconstrained function F : Rn → R:

xk+1 = xk − η ∇F(xk),

where η > 0 is the step-size. We can re-write the above
as xk+1−xk

η = −∇F(xk) and in the limit η → 0, we

obtain the continuous-time equivalent of GD, termed as
gradient-flow, given as ẋ = −∇F(x). More generally,
we can write this dynamical system as ẋ = u where
u can be designed to solve a given problem (e.g., for
unconstrained minimization of F , u = −∇F and for
constrained minimization of F over a convex set C, one can
define u = −k(x − PC(x − ∇F(x))) using the projection
operator PC . We use this dynamical systems viewpoint
to solve the constrained optimization problem (3) in a
distributed fashion. Let xi ∈ Rd represent the state of
agent i modeled using a first-order integrator system:

ẋi = ui, (4)

where ui ∈ Rd can be regarded as a control input, that
depends upon the states of the agent i, and the states of
the neighboring agents j1, j2, · · · , jl ∈ Ni. The problem
statement is formally given as follows.
Problem 1. Design ui for each agent i ∈ V, such
that x1 = x2 = · · · = xN = x∗ is achieved un-
der (4) within a fixed time, for any initial condition
{x1(0), x2(0), · · · , xN (0)}, where x∗ solves (3).

2.2 Preliminaries

In this subsection, we present relevant definitions and
results on FxTS. Consider the system:

ẋ = ϕ(x), (5)

1 Existence and uniqueness of global minimizer is trivially satisfied
for a strongly convex team objective function. While the PL inequal-
ity (see Assumption 4) does not imply convexity, it implies invexity,
i.e., the stationary points are global minimizers.



where x ∈ Rd, ϕ : Rd → Rd and ϕ(0) = 0. The authors in
(Polyakov, 2012) presented the following result for fixed-
time stability, where the time of convergence is finite and
is uniformly bounded for any initial condition x(0).
Lemma 1 ((Polyakov, 2012)). Suppose there exists a
positive definite, radially unbounded, continuously differ-
entiable function V : Rd → R, i.e., V ∈ C1 such that
V (0) = 0 and V (x) > 0 for x ̸= 0, and:

V̇ (x) ≤ −aV (x)p − bV (x)q, ∀x ̸= 0, (6)

with a, b > 0, 0 < p < 1 and q > 1. Then the origin of
(5) is FxTS, i.e., x(t) = 0 for all t ≥ T , where the settling
time T satisfies T ≤ 1

a(1−p) + 1
b(q−1) .

Next, we present some well-known results that will be
useful in proving our claims on fixed-time parameter
estimation and consensus protocols.
Lemma 2 ((Zuo and Tie, 2016)). Let zi ∈ R+ for
i ∈ {1, 2, · · · , N}, N ∈ Z+. Then the following hold:∑N

i=1
zpi ≥

(∑N

i=1
zi

)p

, 0 < p ≤ 1, (7a)∑N

i=1
zpi ≥ N1−p

(∑N

i=1
zi

)p

, p > 1. (7b)

Lemma 3. Let G = (A,V) be an undirected graph con-
sisting of N nodes located at xi ∈ Rd for i ∈ {1, 2, · · · , N}
and Ni denotes the in-neighbors of node i. Then,∑N

i=1

∑
j∈Ni

sign(xi − xj) = 0. (8)

Lemma 4. Let w : Rd → Rd be an odd mapping,
i.e., w(x) = −w(−x) for all x ∈ Rd and let the graph
G = (A,V) be undirected. Let {xi} and {ei} be the sets
of arbitrary vectors with i ∈ V and xij := xi − xj and
eij := ei − ej. Then, the following holds∑N

i,j=1
aije

⊺
i w(xij) =

1

2

∑N

i,j=1
aije

⊺
ijw(xij). (9)

Lemma 5 ((Mesbahi and Egerstedt, 2010)). Let G =
(A,V) be an undirected, connected graph. Let LA :=
[lij ] ∈ RN×N be graph Laplacian matrix defined as lij =

N∑
k=1,k ̸=i

aik, i = j

−aij , i ̸= j

. Then the Laplacian LA has following

properties:
1) LA is positive semi-definite, LA1N = 0N , λ2(LA) > 0.

2) x⊺LAx = 1
2

∑N
i,j=1 aij(xj − xi)

2, and if 1⊺x = 0, then

x⊺LAx ≥ λ2(LA)x⊺x.

3. MAIN RESULTS

Our approach to fixed-time multi-agent distributed opti-
mization is based on first designing a centralized fixed-
time protocol that relies upon global information. Then,
the quantities in the centralized protocol are estimated in
a distributed manner. In summary, the algorithm proceeds
by first estimating global quantities (g∗ as defined in (11))
required for the centralized protocol, then driving the
agents to reach consensus (xi(t) = x(t) for all i ∈ V), and
finally driving the common trajectory x(t) to the optimal
point x∗, all within a fixed time T . Recall that agents are
said to have reached consensus on states xi if xi = xj for all
i, j ∈ V. To this end, we define first a centralized fixed-time
protocol. Note that agents’ states are driven by the same

input under centralized settings and are initialized to the
same starting point. In a distributed setting, this behavior
translates to agents having already reached consensus and
subsequently being driven by a common input (see Remark
3). We make the following assumptions.
Assumption 2. Functions fi are convex, twice differen-

tiable and the Hessian ∇2F (x) =
∑N

i=1∇2fi(x) ⪰ kI,
where k > 0, for all x ∈ Rd, i.e., function F is strongly
convex with modulus k.
Remark 1. Assumption 2 can be satisfied even if just one
of the objective functions is strongly convex.
Assumption 3. Each node i receives xj ,∇fj(xj) from
each of its neighboring nodes j ∈ Ni.

Note that under Assumption 2, the agents only need to
exchange their state values xi and the gradients ∇fi(xi)
with their neighbors. We first present a centralized proto-
col that guarantees solution of (3) in a fixed time. All the
results in the following section assume that Assumptions 1,
2, 3 hold, unless specified otherwise.

3.1 Centralized protocol

Lemma 6 (Centralized fixed-time protocol). Sup-
pose the dynamics of each agent i ∈ V is given by

ui = g∗, xi(0) = xj(0) ∀ i, j ∈ V, (10)

where g∗ is defined as:

g∗(x) = −
(∑N

i=1
∇fi(x) + signl1

(∑N

i=1
∇fi(x)

)
+signl2

(∑N

i=1
∇fi(x)

))
(11)

where l1 > 1 and 0 < l2 < 1, and xi = x for each i ∈ V,
for all t ≥ 0. Then the trajectories of all agents converge
to the optimal point x∗, i.e., the minimizer of the team
objective function (3) in a fixed time Tsc > 0.

Proof. Consider a candidate Lyapunov function:

V (x) =
1

2

(∑N

i=1
∇fi(x)

)⊺ (∑N

i=1
∇fi(x)

)
.

By taking its time-derivative along (10), we obtain:

V̇ (x) =

(∑N

i=1
∇fi(x)

)⊺ (∑N

i=1
∇2fi(x)ẋ

)
= −

(∑N

i=1
∇fi

)⊺ (∑N

i=1
∇2fi

)(∑N

i=1
∇fi

+signl1

(∑N

i=1
∇fi

)
+ signl2

(∑N

i=1
∇fi

))
,

≤ −2kV − k

∥∥∥∥∑N

i=1
∇fi

∥∥∥∥l1+1

− k

∥∥∥∥∑N

i=1
∇fi

∥∥∥∥l2+1

≤ −k2
1+l1

2 V
1+l1

2 − k2
1+l2

2 V
1+l2

2 ,

where the first inequality follows from the fact that∑N
i=1∇2fi ⪰ kI. Thus, using Lemma 1, we have that there

exists Tsc <∞ such that for all t ≥ Tsc, x(t) = x∗ starting
from any initial condition.

The centralized fixed-time protocol inherently assumes
that the agents can directly access the global quantity∑N

i=1∇fi. In a distributed setting, this quantity needs
to be estimated and is not directly accessible. Before



presenting the algorithm to compute this global quantity
in a distributed manner, we first present an extension of
Lemma 6 under further relaxation of Assumption 2. The
notion of gradient-dominance or Polyak- Lojasiewicz (PL)
inequality has been explored extensively in optimization
literature to show exponential convergence. A function
f : Rn → R is said to satisfy PL inequality, or is gradient
dominated, with µf > 0 if

1

2
∥∇f(x)∥2 ≥ µf (f(x)− f∗) ∀x ∈ Rn, (12)

where f∗ = f(x∗) is the value of the function at its
minimizer x∗. We make the following assumption on the
team objective function.
Assumption 4. (Gradient dominated) The function
F is radially unbounded, has a unique minimizer x = x∗,
and satisfies the PL inequality, or is gradient dominated,
i.e., there exists µ > 0 such that

1

2

∥∥∥∥∥
N∑
i=1

∇fi(x)

∥∥∥∥∥
2

≥ µ(F (x)− F ∗) = µ

N∑
i=1

(fi(x)− f∗
i ), (13)

where F ∗ = F (x∗) and f∗
i = fi(x

∗).
Remark 2. As noted in (Karimi et al., 2016), PL in-
equality is the weakest condition among other similar
conditions popularly used in the literature to show linear
convergence in discrete-time (exponential, in continuous-
time). Notably, a strongly convex function F satisfies PL
inequality. Furthermore, note that under Assumption 4, it
is not required that the function F is convex, as long as its
minimizer exists and is unique.

It is easy to show that if a function F : Rm → R is
strongly convex, then the function G : Rn → R, defined
as G(x) = F (Ax), where A ∈ Rn×m is not full row-rank,
may not be strongly convex. On the other hand, as shown
in (Karimi et al., 2016, Appendix 2.3), G still satisfies
PL inequality for any matrix A. Below, an example of an
important class of problems is given for which the objective
function satisfies PL inequality.
Example 1. Least squares: Consider the problem

min
x
∥Ax− b∥2 =

∑n

i=1
∥Aix− bi∥2, (14)

where x ∈ Rn, A ∈ Rn×n and b ∈ Rn. Here, the function
F (x) = ∥x − b∥2 is strongly-convex, and hence, G(x) =
∥Ax− b∥2 satisfies PL inequality for any matrix A.

The objective function (14) satisfies PL inequality, but
need not be strongly convex for any A, thus, one can use
(10) to find the optimal solution for (14) in a fixed time.
Lemma 7. Let Assumption 4 hold. Suppose the dynamics
of each agent i ∈ V in the network is given by (10) where
g∗ given as (11) with xi(t) = x(t) for each i ∈ V, for all
t ≥ 0. Then the trajectories of all agents converge to the
optimal point x∗, i.e., the minimizer of the team objective
function (3) in a fixed time TPL > 0.

Proof. Consider the candidate Lyapunov function as

V (x) =
∑N

i=1(fi(x) − fi(x
∗)) = (F (x) − F ∗). Note that

V is positive definite and per Assumption 4, radially un-
bounded. Taking its time derivative along the trajectories
of (10), we obtain

V̇ (x) = −
∑N

i=1
∇f⊺

i

(∑N

i=1
∇fi + signl1

(∑N

i=1
∇fi

)
+ signl2

(∑N

i=1
∇fi

))
= −∥∇F (x)∥2 − ∥∇F (x)∥l1+1 − ∥∇F (x)∥l2+1

(13)

≤ −2µ(F (x)− F ∗)− (2µ)
1+l1

2 (F (x)− F ∗)
1+l1

2

− (2µ)
1+l2

2 (F (x)− F ∗)
1+l2

2

≤ −4µV (x)− (4µ)
1+l1

2 V (x)
1+l1

2 − (4µ)
1+l2

2 V (x)
1+l2

2

≤ −k1V (x)
1+l1

2 − k2V (x)
1+l2

2 .

Thus, using Lemma 1, we obtain that there exits TPL <∞
such that for all t ≥ TPL, we have that V (x(t)) = 0, or
equivalently, F (x(t)) = F ∗. Under Assumption 4, we have
that F has a unique minimizer, and thus, F (x(t)) = F ∗

implies that x(t) = x∗, which completes the proof.

Remark 3. Lemmas 6 and 7 represent centralized proto-
cols for convex optimization of team objective functions.
Here, the agents are already in consensus and have access

to the global information
∑N

i=1∇fi(x). In the distributed
setting, agents can only access their local information, as
well as xj, ∇fj(xj) for all j ∈ Ni, and will not be in
consensus in the beginning.

3.2 Distributed estimation of global parameters
We now present results for distributed estimation of global
quantity that achieves consensus in a fixed time so that the
problem can be solved in a distributed setting. For each
agent i ∈ V, define gi as:

gi = −
(
Nθi + signl1(Nθi) + signl2(Nθi)

)
, (15)

where gi denotes agent i’s estimate of g∗ and θi : R+ → Rd

is the estimate of the global (centralized) quantities, whose
dynamics is defined as

θ̇i = ωi + hi, (16)

where hi is defined as hi = d
dt∇fi(xi). The signal ω : R+ →

Rd, defined as

ωi = p
∑

j∈Ni

(
sign(θj − θi) + γsignν1(θj − θi)

+ δsign(θj − θi)
ν2

)
, (17)

where p, γ, δ > 0, and 0 < ν2 < 1 < ν1, are suitably chosen
in order to achieve consensus over the quantities θi, as
shown later. The functions {hi} are needed to drive the
consensus values to the global quantities to be estimated.
Observe that {θi} are updated in (16) in a distributed
manner. We make the following assumption on hi.
Assumption 5. The functions hi, hj satisfy ∥hi(t) −
hj(t)∥ ≤ ρ for all t ≥ 0, i, j ∈ V, i ̸= j, for some ρ > 0.
This assumption can be easily satisfied if the graph is
connected for all time t and the gradients and their
derivatives are bounded (Hu and Yang, 2018).
Lemma 8. Let Assumption 5 hold, and the gain p in
(17) satisfies p >

(
N−1
2

)
ρ; then for each agent i ∈ V,

θi(t) = θc(t) := 1
N

∑N
j=1 θj(t) = 1

N

∑N
i=1∇fi(xi(t)), for

all t ≥ Tp where

Tp :=
2

pγN2(1−κ1)cκ1(κ1 − 1)
+

2

pδcκ2(1− κ2)
,

κ1 = 1+ν1

2 , κ2 = 1+ν2

2 and c = 4λ2(LA).



The proof is provided in Appendix A.
Lemma 9 (Fixed-time parameter estimation). Let
ωi(0) = 0d for each i ∈ V and the gain p in (17) satisfy
p >

(
N−1
2

)
ρ. Then there exists a fixed-time 0 < Tp < ∞

such that gi(t) = gj(t) for all i, j ∈ V and t ≥ Tp.

Proof. The proof follows directly from Lemma 8, i.e., it
holds that θi(t) = θj(t) for all t ≥ Tp, i, j ∈ V. From the
definition of gi in (15), it follows that gi(t) = gj(t) for all
t ≥ Tp and for each i, j ∈ V.

The centralized fixed-time protocol in Lemma 6 is based
on two key assumptions: (a) Agents are being driven by
the same input g∗, and (b) agents start at the same initial
state,, i.e., xi(0) = xj(0) for all i, j ∈ V. To this end,
Lemma 9 only ensures that the first of the two conditions
is met. All agents must be driven to the same state in order
to ensure the applicability of Lemma 6 in the distributed
setting. Consequently, we propose the following update
rule for each agent i ∈ V in the network:

ui = ũi + gi, (18)

where gi is as described in (15), and ũi is defined as locally
averaged signed differences:

ũi = q
∑

j∈Ni

(
sign(xj − xi) + αsignµ1(xj − xi)

+ βsignµ2(xj − xi)
)
, (19)

where q, α, β > 0, µ1 > 1 and 0 < µ2 < 1. The following
results establish that the state update rule for each agent
proposed in (18) ensures that the agents reach global
consensus and optimality in fixed time.
Lemma 10 (Fixed-time consensus). Under the effect
of control law ui in (18) with ũi defined as in (19), and
gi(t) = gj(t) for all t ≥ Tp and i, j ∈ V, the closed-
loop trajectories of (4) converge to a common point x̄ for
all i ∈ V in a fixed time Tcon, i.e., xi(t) = x̄(t) for all
t ≥ Tp + Tcon.

Proof. The proof follows from Lemma 8 and the fact that
gi(t) = gj(t) for all t ≥ Tp, i, j ∈ V. Thus, for t ≥ Tp,
the dynamics of agent i in the network is described by
ẋi(t) = ũi(t) + gi(t) with ∥gi(t) − gj(t)∥ = 0 for all
i, j ∈ V. Moreover, ũi has a form similar to ωi. Thus,
from Lemma 8, it follows that there exists a Tcon > 0 such

that xi(t) =
1

N

∑N
j=1 xj(t) for t ≥ Tp + Tcon, where Tcon

satisfies Tcon ≤ 2
qαN2(1−τ1)c̃τ1 (τ1−1)

+ 2
qβc̃τ2 (1−τ2)

, where

τ1 := 1+µ1

2 , τ2 := 1+µ2

2 , c̃>0 is an appropriate constant.

Finally, the following result establishes that the agents
track the optimal point in a fixed time.
Theorem 1 (Fixed-time distributed optimization).
Let each agent i ∈ V in the network be driven by the
control input ui (18). If the functions satisfy Assumption
2 (respectively, Assumption 4), then the agents track the
minimizer of the team objective function within fixed time
T = Tp + Tcon + Tsc (respectively, T = Tp + Tcon + TPL).

Proof. The proof follows directly from the previous results
presented in this section. From Lemmas 8 and 10, it follows
that gi(t) = gj(t) for all t ≥ Tp, and xi(t) = xj(t) for
all t ≥ Tp + Tcon. Since gi is a function of θi, and from
Lemma 9, we have that θi(t) =

∑
j ∇fj(xj(t)) for all

t ≥ Tp, with ∇fi(xi(t)) = ∇fj(xj(t)) for all t ≥ Tp +Tcon,
we obtain that gi(t) = g∗(t) and ũi(t) = 0 for all i ∈ V,
t ≥ Tp + Tcon. Thus, if the objective functions satisfy
Assumption 2 (respectively, Assumption 4), the conditions
of the centralized fixed-time protocol in Lemma 6 are
satisfied, and therefore, xi(t) = x∗ for all i ∈ V, for
t ≥ Tp +Tcon +Tsc (respectively, t ≥ Tp +Tcon +TPL).

Note that the total time of convergence T = Tp+Tcon+Tsc

((respectively, t ≥ Tp + Tcon + TPL)) depends upon the
design parameters p, q, α, β, γ, δ, µ1, µ2, ν1, ν2, l1, l2. Hence,
for a given user-defined time budget Tb, one can choose
large values of these parameters so that T ≤ Tb, and hence,
convergence can be achieved within user-defined time Tb.
The overall Fixed-time stable Distributed Optimization
Algorithm (FxTS-DOA) with discrete-time iterative im-
plementation is described in Algorithm 1.

Algorithm 1 Discretized FxTS-DOA

1: procedure FxTS Dist Opt((A,V), {fi(·)})
2: Inputs: p, q, l1, l2, ν1, ν2, µ1, µ2; Step-size η
3: Initialize local estimates {xi} for each i ∈ V
4: ωi ← 0d×1 for each i ∈ V
5: θi ← 0d×1 for each i ∈ V
6: for k = 1, k ≤max-epochs do
7: Each agent computes its own gradient ∇ifi(xi)
8: ūi←q((xj−xi)+signµ1(xj−xi)+signµ2(xj−xi))
9: ωi←η((θj−θi)+signν1(θj−θi)+signν2(θj−θi))

10: ▷ Information sharing with neighbors
11: θi ← ωi + η∇ifi(xi)

12: gi ← −
(
(Nθi) + signl1(Nθi) + signl2(Nθi)

)
13: xi ← xi + η(gi + ūi)
14: ▷ Agents update their estimates locally
15: end for
16: return x1 = x2 = · · · = x∗

17: end procedure

4. DISCRETIZATION OF THE FXTS-DOA

Continuous-time dynamical systems, such as the one given
by (4) with ui given by (18), offer effective insights into
designing accelerated schemes for solving a distributed
optimization problem. However, in practice, a discrete-
time implementation is used for solving optimization prob-
lems. (Polyakov et al., 2019) defines a discretization to be
consistent with a fixed-time convergent dynamical system
if the trajectories of the discretized system converge to
an arbitrarily small neighborhood of the equilibrium point
of the continuous-time system within a fixed number of
steps, independent of the initial conditions. In order to
prove that an Euler discretization scheme of the proposed
method in Section 3 leads to a consistent discretization,
it is sufficient to show that the closed-loop dynamics (4)
under ui given by (18) satisfies the conditions of (Garg
et al., 2022, Theorem 3). Consider the proposed algorithm
in Section 3. For 0 ≤ t ≤ Tp + Tcon, the dynamics for all
θi, xi can be written in a compact form as:

θ̇ = F1(θ) + F2(x), ẋ = F3(x) + F4(θ), (20)

where

F1(θ)=

ω1

..

.
ωN

, F2(x)=

h1

..

.
hN

, F3(x)=

 ũ1

..

.
ũN

, F4(θ)=

 g1
..
.

gN

.



Fig. 1. Evaluation of FxTS-DOA for training of DNNs.

More compactly, define z = [θ⊺, x⊺]⊺ ∈ R2Nd and F(z) :=
[(F1(θ) + F2(x))⊺, F3(x)⊺ + F4(θ)⊺]⊺ so that

ż ∈ F(z). (21)

We use the notion of differential inclusion in (21) since the
right-hand side of (21) is not single-valued. The interested
reader is referred to (Clarke et al., 2008) for more details.
First, we show that the set-valued map F in (21) satisfies
the conditions in (Garg et al., 2022, Theorem 3).
Lemma 11. If the functions fi satisfy either Assumption
2 (or Assumption 4) for all i ∈ V, then F in (21) is upper
semi-continuous set-valued map, taking non-empty, convex
and compact values.

Proof. Define S = {z | F(z) = 0} is the set of equilibrium
points for the dynamics of variable z. Note that the
equilibrium points of (21) are the points xi = xj and
θi = θj for all i ̸= j, which is a 2d−dimensional subspace in
R2Nd, and thus, S is a Lebesgue measure zero set in R2Nd.
Note that the map F is continuous for all z ∈ R2Nd\

⋃
i̸=j

Sij

where

Sij = {z = [θ⊺, x⊺]⊺ | xi = xj , θi = θj} ⊂ R2Nd−2d, (22)

and is also locally essentially bounded. From (Danca, 2010,
Remark 2), we obtain that the map F is upper semi-
continuous with non-empty, compact and convex values
for all 0 ≤ t ≤ Tp + Tcon.

Now, it holds that ωi(t) = 0 and ũi(t) = 0 for i =
{1, 2, . . . , N}, i.e., F1(θ(t)) = F3(x(t)) = 0, for all t ≥
Tp + Tcon. Furthermore, for t ≥ Tp + Tcon, it holds that
gi(θ(t)) = g∗(x(t)), and thus, F4(θ(t)) = F4(x(t)). Hence,
the augmented dynamics for t ≥ Tp + Tcon reads:

θ̇(t) = F2(x(t)), ẋ(t) = F4(x(t)). (23)

Note that F2 and F4 are continuous functions in their
arguments, and thus, the map F(z) the required conditions
for all t ≥ Tp + Tcon, which completes the proof.

Now, we are ready to present the main result of this
section, which shows that when the closed-loop dynamics
of (4) under u = ũi + gi, written compactly as (21),
is discretized using Euler discretization, the trajectories
of the resulting discrete-time system reach an arbitrarily
small neighborhood of the optimal point x∗ within a fixed

number of steps. To this end, define z∗ as z∗ :=

[
IN ⊗ x∗

0Nd

]
where ⊗ denote the Kronecker product, IN ∈ RN×N an
identity matrix, and 0Nd ∈ RNd a vector consisting of 0s.
Theorem 2. Assume that the functions fi satisfy As-
sumption 2 (or Assumption 4) for all i ∈ V and let p = q,
α = γ, β = δ, l1 = µ1 = ν1 = 1+ 1

µ and l2 = µ2 = ν2 = 1−
1
µ for some µ > 1. Consider the Euler discretization of

(21) given by

zk+1 ∈ zk + ηF(zk), (24)

where η > 0. Then, for each ϵ > 0, there exists η∗ > 0
such that for all η ∈ (0, η∗], the trajectories of (24) satisfy

∥zk − z∗∥ ≤

 1
√
c1

(√
a

b
tan

(
π

2
−

ηk
√
ab

2µ

))µ̄

+ ϵ ; k ≤
µπ

√
abη

ϵ ; otherwise,

(25)

where a, b, c1, µ > 0.

The proof is provided in Appendix B. Thus, it is shown
that the trajectories of the closed-loop dynamics (4) of
each node i under the input (18), when discretized using
Euler discretization, converge uniformly to an arbitrarily
small neighborhood (dictated by ϵ) of the optimal point
x∗ within a fixed number of steps µ̄

2
√
abη

.

5. NUMERICAL VALIDATION

We validate the performance of the proposed DOA for
distributed training of deep neural networks on the MNIST
dataset. We assume a network of three servers connected
in a line graph where each server has access to only one-
third (20k) of the total (60k) training images. We consider
a network with a single convolutional layer with ReLU
activation (consisting of 32 filters of size 3 × 3), followed
by a dense layer (with ReLU activation) of output size 128.
The final linear layer transforms 128-dimensional input
to a 10-dimensional output (corresponding to 10 classes)
with SoftMax activation. The network comprises a total
of 2.8×106 learnable parameters. The individual servers
have their own local estimates of the neural network
parameters. Figure 1 shows that the servers initialized with
different parameters and having different test accuracies
quickly converge to around 94% accuracy in less than
ten epochs. Moreover, the norms of the consensus errors
between servers i and j, denoted by eij := xi − xj , too,
converge to zero, indicating that all the servers arrive at
a similar estimate for all the neural network parameters.
We also compare the performance of the proposed FxTS-
DOA with the decentralized SGD (DSGD) (Koloskova
et al., 2020) algorithm. As can be seen in Figure 1 for
the DSGD method, even though the servers have better
initial test accuracies to start with, the non-agreement
between initial parameter estimates and large consensus
errors eventually drives the cumulative test accuracy to
∼ 93.27%. Moreover, the servers achieve consensus on
parameter estimates only after 20 epochs. On the other
hand, the proposed FxTS-DOA trades off initial dip in test
accuracies for super fast consensus on network parameters,
eventually resulting in improved cumulative performance.
Recall that the exchange of local estimates of parameters
and gradients between any two neighbors occurs only once
per epoch, i.e., the iteration complexity is only linear in



the number of parameters (see lines 8-9 in Algorithm 1),
resulting in significantly lower computational overhead.

Appendix A. PROOF OF LEMMA 8

Proof. The time derivative of θi is given by:

θ̇i = p
∑

j∈Ni

(
sign(θj − θi) + γsignν1(θj − θi)

+ δsign(θj − θi)
ν2

)
+ hi.

Define θji := θj − θi and θc := 1
N

∑N
j=1 θj , i, j ∈ V. The

difference between an agent i’s state θi and the mean value
θc of all agents’ states is denote by θ̃i := θi− θc. Similarly,
θ̃ji := θ̃j − θ̃i. The time-derivative of θ̃i is given by:

˙̃
θi = ωi + hi −

1

N

∑N

j=1
ωj −

1

N

∑N

j=1
hj

=
1

N

∑N

j=1
(ωi − ωj) +

1

N

∑N

j=1
(hi − hj) (A.1)

Define the error vector θ̃ =
[
θ̃1 θ̃2 · · · θ̃N

]⊺
. Consider the

candidate Lyapunov function defined as V (θ̃) = 1
2∥θ̃∥

2 =
1
2

∑N
i=1 θ̃

⊺
i θ̃i. Taking its time-derivative along the trajecto-

ries of (A.1) yields:

V̇ (θ̃) =
1

N

N∑
i,j=1

θ̃⊺i (ωi − ωj)︸ ︷︷ ︸
V̇1

+
1

N

N∑
i,j=1

θ̃⊺i (hi − hj)︸ ︷︷ ︸
V̇2

. (A.2)

From (17), the first term V̇1 is rewritten as:

V̇1 =
1

N

∑N

i=1
θ̃⊺i

∑N

j=1

(
ωi − p

∑
k∈Nj

(
sign(θk − θj)

+ γsignν1 (θk − θj) + δsign(θk − θj)
ν2

))
(8)
=

1

N

N∑
i=1

θ̃⊺i

N∑
j=1

ωi =

N∑
i=1

θ̃⊺i ωi = p

N∑
i=1

θ̃⊺i

∑
j∈Ni

(sign(θji) +

γsignν1 (θji) + δsign(θji)
ν2 )

(9)
=

p

2

N∑
i=1

∑
j∈Ni

θ̃⊺ij (sign(θji) + γsignν1 (θji) + δsign(θji)
ν2 ) ,

where the last equality follows with w(x) = x in (9). Using
this, and the fact that sign(θij)

l = −sign(θji)
l for any odd

l ≥ 0, we obtain

V̇1 = −
p

2

N∑
i=1

∑
j∈Ni

θ̃⊺ij (sign(θij) + γsignν1 (θij) + δsign(θij)
ν2 )

= −
p

2

N∑
i=1

∑
j∈Ni

(
∥θ̃ij∥+ γ∥θ̃ij∥ν1+1 + δ∥θ̃ij∥ν2+1

)
, (A.3)

where the last equality follows from θ̃ij = (θi− θc)− (θj −
θc) = θij . The second term in (A.2) can be bounded as:

V̇2 =
1

2N

N∑
i,j=1

θ̃⊺ij (hi − hj) ≤
1

2N

N∑
i,j=1

∥θ̃ij∥∥hi − hj∥

≤ ρ

2N

N∑
i,j=1

∥θ̃ij∥ ≤
ρ

2N

N max
i

N∑
j=1,j ̸=i

∥θ̃ij∥


≤ ρ

2

(N − 1)

2

∑N

i=1

∑
j∈Ni

∥θ̃ij∥, (A.4)

where the last inequality follows from connectivity of G.
Thus, from (A.3) and (A.4), it follows that

V̇ (θ̃) ≤ −
1

2

(
p− ρ

(N − 1)

2

)∑N

i=1

∑
j∈Ni

∥θ̃ij∥

−
1

2
pγ

N∑
i=1

∑
j∈Ni

∥θ̃ij∥ν1+1 −
1

2
pδ

N∑
i=1

∑
j∈Ni

∥θ̃ij∥ν2+1

≤ −
1

2
pγ

N∑
i=1

∑
j∈Ni

∥θ̃ij∥ν1+1 −
1

2
pδ

N∑
i=1

∑
j∈Ni

∥θ̃ij∥ν2+1

≤ −
pγ

2

N∑
i=1

N∑
j=1

(
aij∥θ̃ij∥2

)κ1 −
pδ

2

N∑
i=1

N∑
j=1

(
aij∥θ̃ij∥2

)κ2
,

where κ1 = 1+ν1

2 , κ2 = 1+ν2

2 . Define ηij = aij∥θ̃ij∥2. With
this, and using the fact that ν1 > 1 and ν2 < 1, we obtain:

V̇ (θ̃) ≤ −pγ

2

∑N

i,j=1
ηκ1
ij −

pδ

2

∑N

i,=1
ηκ2
ij

(7)

≤ −pγ

2
N2(1−κ1)

(∑N

i,j=1
ηij

)κ1

− pδ

2

(∑N

i,j=1
ηij

)κ2

.

We have

N∑
i,j=1

ηij =

N∑
i,j=1

aij∥θ̃ij∥2

= 2θ̃⊺LA⊗IN θ̃ ≥ 2λ2(LA⊗IN )θ̃⊺θ̃ =cV,

where c = 4λ2(LA). With this, we obtain that

V̇ (θ̃) ≤ −pγ

2
N2(1−κ1)cκ1V (θ̃)κ1 − pδ

2
cκ2V (θ̃)κ2 .

With ν1 > 1, we have κ1 > 1, and with ν2 < 1, we
have κ2 < 1. Hence, using Lemma 1, we obtain that
V (θ̃(t)) = 0, i.e., θi(t) = θc(t), for all t ≥ Tp, where
Tp = 2

pγN2(1−κ1)cκ1 (κ1−1)
+ 2

pδcκ2 (1−κ2)
. Using the fact that∑N

i=1 ωi(t) = 0 for all t ≥ 0, we obtain that

N∑
i=1

θ̇i(t) =

N∑
i=1

ωi(t) +

N∑
i=1

hi(t) =

N∑
i=1

hi(t) =

N∑
i=1

d

dt
ζi(t),

=⇒
∑N

i=1
θi(t) =

∑N

i=1
ζi(t) + c.

With θi(0)=ζi(0) =⇒ c=0, completing the proof.

Appendix B. PROOF OF THEOREM 2

Proof. First, consider the closed-loop dynamics (21) for
t ≤ Tp + Tcon. From Lemma 9, it holds that the func-

tion V1(θ) = 1
2∥θ̃∥

2, where θ̃ is as defined in Lemma 8

satisfies V̇1(θ(t)) ≤ −a1V1(θ)κ1 − a2V1(θ)κ2 , where a1 =
pγ
2 N2(1−κ1)cκ1 , a2 = pδ

2 cκ2 , κ1 = 1+ν1

2 > 1, κ2 = 1+ν2

2 < 1
and c = 4λ2(LA). Similarly, since p = q, α = γ, β = δ,
µ1 = ν1 and µ2 = ν2, the function V2(x) = 1

2∥x̃∥
2

where x̃i(t) = xi(t) − 1
N

∑N
j=1 xj(t), satisfies V̇2(x(t)) ≤

−a1V2(x)κ1 − a2V2(x)κ2 . Now, define z = [x⊤ θ⊤]⊤ and
V (z(t)) = V1(θ(t)) + V2(x(t)), so that

V̇ (z(t)) ≤ −a1V1(θ)κ1 − a2V1(θ)κ2 − a1V2(x)κ1 − a2V2(x)κ2

= −a1(V1(θ)κ1 + V2(x)κ1)− a2(V1(θ)κ2 + V2(x)κ2),

for all t ≤ Tp + Tcon. Now, using Lemma 2, it holds that
V1(θ)κ1 +V2(x)κ1 ≥ 21−κ1(V1(θ)+V2(x))κ1 = 21−κ1V (z)κ1

and V1(θ)κ2 +V2(x)κ2 ≥ (V1(θ)+V2(x))κ2 = V (z)κ2 . Thus,

it holds that V̇ (z(t)) ≤ −a121−κ1V (z(t))κ1 − a2V (z(t))κ2

for all t ≤ Tp + Tcon. Hence, z = z̄ is an FxTS equilibrium



point of (21) where z̄ =

[
IN ⊗ θ̄
IN ⊗ x̄

]
with θ̄ = 1

N

∑N
j=1 θj and

x̄ = 1
N

∑N
j=1 xj . Note also that V1 and V2 are quadratic

in the error θ̃ and x̃, respectively. Hence, it holds that
V (z(t)) = 1

2∥θ̃∥
2 + 1

2∥x̃∥
2 ≤ 1

2∥z̃∥
2 where z̃ = z −

z =

[
θ̃
x̃

]
. Furthermore, it holds that V (z(t)) = 1

2∥θ̃(t)∥2 +

1
2∥x̃(t)∥2 ≥ 1

4∥z̃(t)∥2. Now, consider the time interval
t ≥ Tp + Tcon. The dynamics for z reads ż(t) = F (z(t)) =[
F2(x(t))
F4(x(t))

]
, for t ≥ Tp + Tcon. Consider the Lyapunov

candidate V3(z(t)) = 1
2

∑N
i=1 ∥∇fi(x(t))∥2 + 1

2∥θ̃(t)∥2.

Note that from Lemma 9, it follows that θ̃(t) = 0 for
t ≥ Tp. If fi satisfies Assumption 2, then from Lemma 6, it
follows that the time derivative of V along the trajectories
of z for t ≥ max{T1, T2} reads

V̇3(z(t)) ≤ −k2
1+l1

2 V3(z(t))
1+l1

2 − k2
1+l2

2 V3(z(t))
1+l2

2

= −k2κ1V3(z(t))κ1 − k2κ2V3(z(t))κ2 ,

since l1 = µ1 and l2 = µ2. Note that from (Karimi et al.,
2016, Theorem 2), it follows that under strong convexity
implies quadratic growth, and thus, we obtain that the
function V satisfies the quadratic growth requirement in
(Garg et al., 2022, Theorem 3). If, on the other hand,
fi satisfies Assumption 4, then from Lemma 7, it follows
that the time derivative of V along the trajectories of z
for t ≥ max{T1, T2} reads

V̇3(z(t)) ≤ −k
1+l1

2
1 V3(z(t))

1+l1
2 − k

1+l2
2

2 V3(z(t))
1+l2

2

≤ −kκ2
1 V3(z(t))κ1 − kκ2

2 V3(z(t))κ2

where k1 = (2µ)
1+l1

2 2
1+l1

2 and k2 = (2µ)
1+l2

2 2
1+l2

2 . Choose
a = min{a121−κ1 , k2κ1 , kκ1

1 } and b = min{a2, k2κ2 , kκ2
2 },

so that it holds that V̇ (z(t)) ≤ −aV (z(t))κ1 − bV (z(t))κ2

for all t ≥ 0. In this case as well, since the system
trajectories evolve in a compact set {z | V (z) ≤ V (z(0))},
from (Karimi et al., 2016, Theorem 2), it follows that the
function V satisfies the quadratic growth requirement in
(Garg et al., 2022, Theorem 3). Thus, all the conditions of
(Garg et al., 2022, Theorem 3) are satisfied with β = 1

2 ,
and hence, (25) holds.
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