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Abstract— In cooperative decentralized multi-agent rein-
forcement learning (MARL), the presence of even a single
greedy adversarial agent can significantly disrupt the conver-
gence towards optimality. This paper provides both theoretical
insights and empirical evidence illustrating this phenomenon.
Leveraging a variant of the ClippedGossip algorithm for
consensus, we propose a novel approach to neutralize the
disruptive influence of greedy adversaries. Through rigorous
analysis, we establish the convergence of off-policy actor-
critic decentralized MARL in environments containing non-
cooperating agents. Experiments across diverse scenarios val-
idate the efficacy of our approach, demonstrating its ability
to maintain cooperation and achieve convergence even in the
presence of adversarial behavior.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has been
applied recently in many applications such as autonomous
driving cars, intelligent systems [1], cyber-physical systems
and sensor networks [2]. Specifically, MARL addresses the
sequential decision-making problem of multiple autonomous
agents that operate in a common environment, each of which
aims to optimize its own long-term return by interacting with
the environment and other agents. In this paper, we focus on
MARL for cooperative agents.

In cooperative MARL [3], agents typically operate as
independent decision-makers, refining their control policies
through environmental interactions. At each state, each agent
takes an action, and these actions together determine the
next state of the environment and the reward of each agent.
These cooperative agents aim at maximizing the long-term
return corresponding to the team averaged reward. Although
effective, these approaches hinge on the assumption of agents
sharing their local rewards, which might not align with
privacy concerns in certain scenarios. Recent advancements
have sidestepped this assumption by pioneering entirely
decentralized learning frameworks [4]. Here, both training
and testing phases are decentralized, with agents exclusively
receiving local rewards and exchanging information about
team performance—such as local rewards or parameters of
estimated team-average action-value functions—with neigh-
boring agents, facilitated by a graph structure.

In this paper, we focus on decentralized learning using
a consensus-based off policy actor-critic (AC) MARL al-
gorithm [5]. Specifically we study the effect of a greedy
Byzantine adversary on this consensus MARL algorithm.
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The Byzantine adversarial agent does not participate in the
consensus process and instead aims to maximize its own
reward. Even though other agents have their own goals, the
adversarial agent’s greedy actions can potentially push them
all towards achieving the adversarial agent’s own rewards
instead. Our goal in this paper is to provide a robust
algorithm and achieve resilience against adversarial attacks.
We particularly focus on Byzantine adversarial agents and
use a variant of the ClippedGossip algorithm [6] as the
defensive strategy against these adversarial attacks. The main
contributions of our paper are summarized as follows:
Cooperative decentralized MARL under adversarial set-
ting Arguably for the first time, we undertake an examination
of the off-policy decentralized AC-MARL algorithm in the
context of an adversarial agent. Our investigation yields
theoretical substantiation of the adversarial agent’s influence,
compelling cooperative agents to prioritize the adversarial
agent’s individual reward. We show that the presence of
a single Byzantine adversary is sufficient to incite this
opportunistic behavior.
Byzantine adversaries can be tamed Employing a variant
of the recently introduced ClippedGossip consensus
algorithm, we show that the opportunistic behavior of adver-
sarial agents can be circumvented by the remaining cooper-
ative agents. The central concept is to limit the consensus
updates received from neighboring agents whose parameters
significantly deviate from those of the receiving agent.

II. RELATED WORK

Centralized Cooperative MARL: Recent advancements in
centralized cooperative MARL algorithms have adopted the
centralized training decentralized execution (CTDE) mech-
anism. These algorithms can be categorized into two main
groups: value-based methods and actor-critic-based methods.
Value-based approaches, such as those proposed by [7],
achieve a separable joint Q-value function during centralized
training. However, during execution, only the individual
Q-value function for each agent is utilized. On the other
hand, actor-critic methods typically feature a centralized
critic, while the actor employs only local observations for
decentralized execution by each agent [8].
Decentralized Cooperative MARL: Decentralized MARL
has garnered significant attention in recent years due to
privacy related concerns. Building upon the Gradient Tempo-
ral Difference (GTD-2) framework introduced by [9], fully
decentralized extensions for MARL, applicable to both GTD-
2 and linear Temporal Difference Control (TDC), have been
proposed in [10].



Byzantine-Robust Distributed Learning: Byzantine-robust
distributed learning has emerged as a significant area of
interest in recent years. In decentralized settings, cur-
rent Byzantine-resilient algorithms, such as those proposed
in [11], are mainly applicable for supervised learning, either
in i.i.d. or deterministic settings. In the consensus-based
Multi-Agent Reinforcement Learning (MARL) setting, ap-
proaches like those presented in [12] utilize element-wise
trimmed mean to aggregate neighboring messages.

III. PROBLEM FORMULATION AND PRELIMINARIES

Our work focuses on fully decentralized multi-agent re-
inforcement learning (MARL), where both training and ex-
ecution occur without centralized coordination. The agents,
except for an adversary, are homogeneous and equipped with
local objective functions. The primary goal is to collabora-
tively maximize the total reward.

Given the decentralized setting, each agent maintains its
own local target policy function, parameterized by θi for the
ith agent. In the absence of centralized learning, agents can
exchange their parameter vectors with neighboring agents
while striving for cooperative reward maximization. The
objective is to achieve consensus on a parameter vector that
optimally enhances the total reward. However, the adversarial
agent operates with a purely selfish objective, aiming solely
to maximize its own reward while disregarding the coopera-
tive goal, i.e., it does not participate in the consensus process.

The following sections outline the mathematical founda-
tions underlying information exchange in agent networks and
the conditions necessary for parameter convergence.

A. Networked Markov Decision Process
We consider a Markov decision process (MDP) model on a

time-varying communication network with N = {1, . . . , N}
representing a set of N agents. Let N+ and N− denote the
set of cooperative agents and adversarial agents, respectively,
and note that N = N+ ∪ N−. The graph {Gt}t∈N =
{(N , Et)}t∈N is defined by the set of vertices N and the
set of edges Et which depicts the neighbor relationships
among the agents. Specifically, (j, i) is an edge in Gt

whenever agents j and i can communicate. Furthermore,
(S,A, P, {ri}i∈N , {Gt}t∈N, γ) denotes a networked multi-
agent discounted MDP, where S is the shared state space,
A =

∏
i∈N Ai is the joint action space (Ai is the action space

of agent i), P : S×S×A→ [0, 1] is the transition probability
function, ri : S × A → [0, 1] is the local reward function
for each agent i ∈ N , the sequence {Gt}t∈N describes the
communication network at each timestep, and γ ∈ (0, 1) is
an appropriately chosen discount factor.

We assume that the state and action spaces are finite. Let
r̄t+1 denote the global reward generated at time t + 1, and
let r̄ : S×A→ R be given by r̄(s, a) = 1

N

∑
i∈N ri(s, a) =

E[r̄t+1 | st = s, at = a]. The policy function π : A× S →
[0, 1] represents a conditional probability distribution π(·|s)
over A for each element s ∈ S. For a policy π, the state-
value function is

vπ(s) = Es∼π

[∑∞

k=1
γk−1r̄t+k | st = s

]
, (1)

which satisfies

vπ(s) =
∑
a∈A

ν(a|s)
∑
s′∈S

P (s′|s, a)[r̄(s, a) + γvπ(s
′)].

The action-value function is

qπ(s, a) =
∑

s′∈S
P (s′|s, a)(r̄(s, a) + γvπ(s

′)).

Suppose each agent i ∈ N be equipped with its own local
behavior policy µi : Ai × S → [0, 1]. Now for each agent
i ∈ N , let πi

θi : Ai × S → [0, 1] be some suitable set of
local target policy functions parametrized by θi ∈ Θi, where
Θi ⊂ Rmi is compact. We further assume that each πi

θi

is continuously differentiable with respect to θi. Set θ =
[θ⊺1 , . . . , θ

⊺
N ]⊺. Define

µ =

N∏
i=1

µi : A× S → [0, 1] and πθ =

N∏
i=1

πi
θi : A× S → [0, 1].

These correspond to the global behavior function and global
parametrized target policy function, respectively. Building
upon previous works [13], our goal is to maximize the global
policy function given by:

Jµ(θ) =
∑

s∈S
dµ(s)vπθ

(s). (2)

Here, dµ(s) := limt→∞ P(St = s|s0, µ) is the limiting
distribution of states under µ and P(St = s|s0, µ) is the
probability that St = s when starting in state s0 and
executing µ. The gradient of Jµ(θ) defined in (2) with respect
to each θi as proved in [5] is given by:

∇θiJµ(θ) =
∑
s∈S

m(s)
∑
a∈A

πθ(a|s)qθ(s, a)∇θi log πθi(ai|s).

where m(s) is the emphatic weighting of s ∈ S, with vector
form m⊺ = d⊺

µ(I−Pθ,γ)
−1; Pθ,γ ∈ R|S|×|S| has entries:

Pθ,γ(s, s
′) = γ

∑
a∈A

πθ(a|s)P (s′|s, a).

B. Assumptions and Network Structure

Before proceeding further, we introduce some common
assumptions needed for obtaining the convergence of the
consensus MARL algorithm which we introduce in the later
section. Most of these assumptions are standard and have
appeared in existing literature, such as [5].

Assumption 1: The policy πi(ai|s; θi) > 0 for any i ∈ N ,
θi ∈ Θi, s ∈ S, ai ∈ Ai. Also, πi(ai|s; θi) is continuously
differentiable with respect to θi. For any θ ∈ Θ, we let
Pθ(st+1|st) =

∑
at∈A P (st+1|st, at)π(a|s; θ) denote the

transition matrix of the Markov chain {st}t≥0 induced by
policy π(a|s; θ). The Markov chain {st}t≥0 is irreducible
and aperiodic under any π(a|s; θ).

Assumption 2: For each agent i ∈ N , the local θ-update is
carried out using the projection operator Γi : Rmi → Θi ⊂
Rmi . Furthermore, the set Θ =

∏N
i=1 Θ

i contains at least
one local optimum of Jµ(θ).

Assumption 3: The instantaneous reward rit+1(st, at, st+1)
is uniformly bounded for any i ∈ N , t ≥ 0, i.e., rit ≤ R.
Recall that Assumptions 1-3 are trivially satisfied in most
practical settings. Additionally, we require the underlying



network to be undirected and connected. More specifically,
we impose the following structure on underlying network:

Assumption 4: The sequence of random matrices
{Ct}t≥0 ⊆ RN×N satisfies

1) Ct is row stochastic, i.e., Ct1 = 1, and ct(i, j) = 1
for i = j ∈ N−. There exists a constant η ∈ (0, 1)
such that, for any ct(i, j) > 0, we have ct(i, j) ≥ η.

2) If (i, j) /∈ Et, then ct(i, j) = 0. Moreover, for every
(i, j) ∈ N , we have ct(i, j) = ct(j, i).

3) The spectral norm ρ = E[C⊺
t (I − 11⊺/N)Ct] satisfies

0 ≤ ρ < 1.
4) Given the σ-algebra generated by the random variables

before time t, Ct is conditionally independent of rit+1

for each i ∈ N .
Remark 1: Assumption 4 states that the edge weights

ct(i, j) are non-negative whenever there exists an edge
between any pair (i, j) of agents. A simple yet decentral-
ized method for selecting edge weights is using Metropolis
weights, defined as:

ct(i, j) =
(
1 + max[dt(i), dt(j)]

)−1
, ∀(i, j) ∈ Et,

ct(i, i) = 1−
∑

j∈Nt(i)
ct(i, j), ∀i ∈ N , (3)

where dt(i) is the degree of the ith-agent. Observe that the
Metropolis consensus matrix is row-stochastic, with 1 as its
dominant and simple eigenvalue. Consequently, the choice
of Metropolis weights inherently satisfies Assumption 4.

Assumption 5: The feature matrix Φ has linearly indepen-
dent columns, and the value function approximator vω(s) =
ϕ(s)⊺ω is linear in ω.

Assumption 6: The step sizes βω,t and βθ,t satisfy∑
t βω,t =

∑
t βθ,t = ∞,

∑
t β

2
ω,t + β2

θ,t < ∞, βθ,t =

o(βω,t), and limt→∞
βω,t+1

βω,t
= 1.

Remark 2: Assumption 6 is the standard Robbins-Monro
type step size condition used in stochastic approximation
algorithm, and is a crucial condition for ensuring the con-
vergence of the algorithm.

Our primary contribution is the theoretical foundation for
the observation that a single adversarial agent can exploit
the network, inducing opportunistic behavior in other agents
and driving them to maximize its local reward. Consequently,
we make the following assumption for the sake of simplicity
of analysis. However, our results readily generalize to mul-
tiple adversarial agents, provided no adversary is entirely
surrounded by other adversaries, which could potentially
obstruct information flow within the network.

Assumption 7: In adversarial scenario, we assume that
only one malicious Byzantine agent is present.

C. Useful Definitions & Results for Byzantine agents

Definition 1: ClippedGossip is a gossip-based aggre-
gator which uses its local reference model as center and clips
all the received neighboring model weights. Formally, for
CLIP(z, τ) :=min(1, τ/||z||)·z, we update information as:

ωt+1
i :=

∑N

j=1
Wij(ω

t
i +CLIP(ωt

j −ωt
i , τi)), t = 0, 1, . . .

(ClippedGossip)

Algorithm 1 Byzantine-Robust Decentralized Optimization

Input: ω0 ∈ Rd, α, η, {τ ti }, m0
i = gi(ω

0)
1: for t = 0, 1, . . . do
2: for i = 1, . . . , N in parallel
3: mt+1

i = (1− α)mt
i + αgi(ω

t
i)

4: ω
t+ 1

2
i = ωt

i − ηmt+1
i if i ∈ N+ else ∗

5: Exchange ω
t+ 1

2
i with Ni

6: ωt+1
i =ClippedGossip(ω

t+ 1
2

1 ,. . . , ω
t+ 1

2
n ;τ t+1

i )
7: end for
8: end for

Definition 2: Gossip averaging is a simple consen-
sus algorithm where we take the weighted average of the
local node’s weights and neighboring node’s weights as:

ωt+1
i :=

∑N

j=1
Wijω

t
j , t = 0, 1, . . .

(GossipAveraging)
We will be using Theorem 3 from [6] for our proofs. The
assumptions stated in the following section is taken from [6].
Recall that N+ denotes the set of cooperative agents. Let
Ni ∈ N be the neighbors of node i and let N̄i := Ni ∪ {i}.
Consider the general distributed optimization problem

min
ω∈Rd

f(ω) :=
1

|N+|
∑

i∈N+
{fi(ω) := Eξ∼Di

Fi(ω; ξ)}

on heterogeneous (non-i.i.d.) data, where fi is the local
objective of agent i with data distribution Di and independent
noise ξi. We require that the gradients computed over these
data distributions satisfy standard Assumptions 8 and 9 in
the stochastic optimization literature.

Assumption 8: Bounded noise and heterogeneity.
Assume that for all i ∈ N+ and ω ∈ Rd, we have

Eξ∼Di
||∇Fi(ω; ξ)−∇fi(ω)||2 ≤ σ2

Ej∼N+ ||∇fj(ω)−∇f(ω)||2 ≤ ζ2

Assumption 9: L-smoothness. For i ∈ N+, fi(x) : Rd →
R is differentiable and there exists a constant L ≥ 0 such
that for each x, y ∈ Rd, ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

Theorem 1 ([5]): Let the total weight of adjacent Byzan-
tine edges around a regular agent i be defined as δi :=∑

j∈N− Wij , and let the maximum Byzantine weight be
given by δmax := maxi∈N+ δi. Assume that the underlying
graph is undirected and connected, and that Assumptions 8-
9 hold. Furthermore, let δmax = O(γ2). Setting α := 3ηL,
Algorithm 1 ensures that 1

T+1

∑T
t=0 ∥∇f(ω̄t)∥22 ≤

δmaxζ
2

γ2 +ϵ

with an iteration complexity bounded by O
(

σ2

Nϵ2

(
1
N +

δmax

)
+ ζ

γϵ3/2
+ σ2/3

γ2/3ϵ4/3
+ 1

γϵ

)
.

IV. MAIN RESULTS: BYZANTINE ROBUST MULTI AGENT
OFF POLICY ACTOR CRITIC ALGORITHM

A. Algorithm

We now introduce our off policy multi agent algorithm
inspired from [5]. The proof of convergence of this particular



algorithm in the absence of any adversarial agent is already
done in [5]. The primary difference in our work is that we
use ClippedGossip-styled update [6] instead of tradi-
tional GossipAveraging to make our algorithm robust
to Byzantine adversarial attack. In the subsections below, we
establish the convergence of our algorithm in the presence
of an adversarial byzantine agent both in ClippedGossip
and GossipAveraging cases.

Algorithm 2 Byzantine Robust Multi-agent Off-policy
Actor-critic
Initialize θi0 = 0, ω0 = e−1 = 0, F−1 = 0, ρ−1 = 1, τ =
0.5, for all i ∈ N , the initial state s0, and the stepsizes
{βω,t}t∈N, {βθ,t}t∈N.

repeat
for all i ∈ N do

receive ω̃j
t−1 from neighbors j ∈ Nt(i)

if Using ClippedGossip then
ωi
t =

∑
j∈N ct−1(i, j)

(
ω̃i
t−1+

min

(
1, τ

||ω̃j
t−1−ω̃i

t−1||

)
· (ω̃j

t−1 − ω̃i
t−1)

)
else

ωi
t =

∑
j∈N ct−1(i, j)ω̃

j
t−1

end if
execute ait ∼ µi(·|st)

ρit =
πi

θit
(ai

t|st)

µi(ai
t|st)

pit = log ρit
observe rit+1, st+1

repeat ▷ begin inner consensus loop
Share pit, receive pjt from neighbors j∈Nt(i)
pit ←

∑
j∈N ct(i, j)p

j
t

until consensus is achieved ▷ end inner
consensus loop

ρt = exp(npit)
Ft = 1 + γρt−1Ft−1 ▷ begin critic update
Mt = λ+ (1− λ)Ft

et = γλet−1 +Mt∇ωvωi
t
(st)

δit = rit+1 + γvωi
t
(st+1)− vωi

t
(st)

ω̃i
t = ωi

t + βω,tρtδ
i
tet ▷ end critic update

Mθ
t = 1 + λθγρt−1Ft−1 ▷ begin actor update

θit+1 = θit + βθ,tρtM
θ
t ∇θi log πi

θi
t
(ait|st)δit ▷ end

actor update
broadcast ω̃i

t to neighbors over network
end for

until convergence

B. Theoretical Analysis of Adversarial attack under
GossipAveraging Update

We show that the parameters of the critic converge to a
fixed point both for the Byzantine adversarial agent and for
the other non-Byzantine agents. Note that the convergence
of actor parameters is unaffected by the addition of an
adversarial agent, the proof of which has already been shown
in [5], so we will not address it here.

Theorem 2: Let Assumptions 1 and 3-7 hold, then for
any policy π(a|s; θ) the weight vector ωi

t in Algorithm 2
converges to a unique value ω∗ almost surely. That is, we
have limt→∞ ωi

t = ω∗ for i ∈ N . ω∗ is given by ω∗ =
−C−1b, where C = −ΦTM(I − Pλ

π,γ)Φ, b = ΦTMrλπ,γ .
Proof: We let ωt = [(ω1

t )
⊺, . . . , (ωN

t )⊺]⊺ ∈ R(M+L)N .
To prove Theorem 2, we need to show the following

1) The parameter ωt remains bounded for all t ≥ 0,
2) The adversary’s parameters asymptotically converge,

i.e., ωj
t → ω∗, j ∈ N−,

3) The agents’ parameters asymptotically converge to the
consensus value ⟨ωt⟩.

We take advantage of the convergence analysis done in [5]
to prove the key Lemmas.

Lemma 1: Let Assumptions 1 and 3-6 hold. Then the
sequence {ωt} satisfies supt ||ωt|| <∞ almost surely.

Proof: The main proof is given in the Lemma A.3 of
[5, Appendix]. The only difference in our work is that in
the absence of the consensus step the updates of ωi

t, i ∈ N ,
asymptotically follow the ODE ω̇i

t = Cωi
t+bit. The discount

factor satisfies γ ∈ [0, 1) and the stochastic matrix C is
negative definite as proved in [14] having eigenvalues with
strictly negative real parts, which implies that the ODE ω̇i

t =
Cωi

t+bit has an asymptotically stable equilibrium. Therefore,
supt ||ωt|| <∞ almost surely.

Lemma 2: Let Assumptions 1, 3, and 5-7 hold. Then
limt→∞ ωj

t = ωθ, j ∈ N−, almost surely. Furthermore, ωθ

is a unique solution to Cω + b = 0, where C and b are
defined in Theorem 2.

Proof: Since the adversarial agent bypasses the con-
sensus step (as previously mentioned), we can use Lemma 1
to conclude that ω̇j

t = Cωj
t + bjt is the limiting ODE. The

ODE possesses a unique asymptotically stable equilibrium
point ωθ that satisfies Cω + b = 0.

Lemma 3: Let Assumptions 1 and 3-7 hold. Then the
disagreement vector ω⊥,t satisfies limt→∞ ω⊥,t = 0 a.s.

Proof: The proof follows from Lemma A.1 in [5].
In order to complete the proof of Theorem 2, we recall:

1) limt→∞(ωj
t − ωθ) = 0 for j ∈ N− a.s. (Lemma 2)

2) limt→∞(ωi
t − ⟨ωt⟩) = 0 for i ∈ N a.s. (Lemma 3).

Therefore, limt→∞(⟨ωt⟩ − ωθ) = 0 almost surely where ωθ

satisfies Cω + b = 0.

C. Theoretical Analysis of Adversarial attack under
ClippedGossip Update

In the analysis below, we establish that the consensus
update steps of both Algorithm 1 and Algorithm 2 are
fundamentally similar. Leveraging Theorem 1, which was
used to prove the convergence of Algorithm 1, we extend
the analysis to demonstrate the convergence of Algorithm 2.

Lemma 4: Consider the MARL setting described in Sec-
tion 3.1. Under Assumption 3, δit is upper bounded.

Proof: Assuming infinite horizon and from Assump-
tion 3:

vπ(s) = Es∼π

[∑∞

k=1
γk−1r̄t+k | st = s

]
≤ R/1− γ



Here we used the definition of state value function given by
(1). Hence now we can simplify for δit.

δit = rit+1+γviωt
(st+1)−viωt

(st) ≤ R+
γR

1− γ
− R

1− γ
= 0

Lemma 5: Consider the MARL setting described in Sec-
tion 3.1. Under the assumption that ρt−1 ≤ 1 and ρt is
constant, Ft is upper bounded.

Proof: Observe that

F0=0, Ft=1+γρt−1Ft−1=

t−1∑
i=0

(γρt−1)
i =

1−(γρt−1)
t

1−γρt−1

Using the assumption that ρt−1 ≤ 1 we get γρt−1 < 1.
Therefore Ft is bounded.

We first simplify the update of critic parameters as follows:

et = γλet−1 +Mt∇ωvωi
t
(st)

Mt = λ+ (1− λ)Ft

ωi
t = ωi

t + βω,tρtδ
i
tet

ωi
t = ωi

t + βω,tρtδ
i
t(γλet−1 +Mt∇ωvωi

t
(st))

ωi
t = ωi

t + βω,tρtδ
i
t(γλet−1 + (λ+ (1− λ)Ft)∇ωvωi

t
(st))

ωi
t = ωi

t + βω,tρtδ
i
t(γλet−1+

(1 + (1− λ)γρt−1Ft−1))∇ωvωi
t
(st))

Taking γλ = 1− α, we get:

ωi
t = ωi

t + βω,tρtδ
i
t

(
(1− α)et−1+

(1 + (γ − 1 + α)ρt−1Ft−1)∇ωvωi
t
(st)

)
(4)

If we recall from Algorithm 1, the consensus update is:

ω
t+ 1

2
i = ωt

i − ηmt+1
i

ω
t+ 1

2
i = ωt

i − η((1− α)mt
i + αgi(ω

t
i))

(5)

We see that both the equations (4) and (5) are identical with:

η := βω,tρtδ
i
t

Fi(ωt) := vωi
t
(st)(1 + (γ − 1 + α)ρt−1Ft−1)/α

gi(ω
t
i) := ∇Fi(ω

t
i)

min
ωt∈Rd

f(ωt) :=
1

|N+|
∑

i∈N+
{fi(ωt) := Eξ∼Di

Fi(ωt; ξ)}

Theorem 3: Consider the multi-agent reinforcement learn-
ing (MARL) setting described in Section III-A, and let
δmax = O(γ2). Define L as in Theorem 1. Then, setting α :=
3βω,tL, Algorithm 2 guarantees 1

T+1

∑T
t=0 ∥∇f(ω̄t)∥22 ≤

δmaxζ
2

γ2 + ϵ with an iteration complexity of O
(

σ2

Nϵ2

(
1
N +

δmax

)
+ ζ

γϵ3/2
+ σ2/3

γ2/3ϵ4/3
+ 1

γϵ

)
.

Proof: We make the following observations:
• We first note that ρt−1 ≤ 1.
• We assume λ = 0.9 as suggested in [13].
• γ < 1 is the discount factor.

Based on Lemma 4 and the observation that ρt−1 is bounded,
we can conclude that η is bounded as well. In Algorithm 2,

our communication network is assumed to be a connected,
undirected graph satisfying Assumption 4. Additionally, we
utilize Metropolis weights 3 in the consensus matrix which
adheres to Assumption 4. Since vωi

t
(st) is linear by Assump-

tions 5, Fi(ωt) is consequently differentiable. This ensures
that Assumptions 8 and 9 are also satisfied. Therefore, with
Assumptions 8-9 met, we can directly apply Theorem 1,
which guarantees convergence.

V. A MULTI-AGENT GRIDWORLD EXPERIMENT

We now validate our theoretical findings through a simple
multi-agent grid-world experiment.

A. Description of Environment

GridWorld [15]: This environment is a grid-world of dimen-
sion 6×6. Let the number of agents be N = 4. The position
of agent i is described by the tuple (xi, yi), i ∈ [0 · · · 5]2. The
state of this grid-world is given as s = [(xi, yi), i ∈ N ] ∈ S
where S = S1×. . .×SN . The cardinality of S is |S| = 36N .
The agents can move up, down, left, right, or stay put.
If a move takes them off the grid, they just stay where
they are. The set of actions of the network is given as
A = A1 × . . . × AN , whose cardinality is |A| = 5N . The
reward of agent i ∈ N is given as:

ri(si) = −|xi − xi
des| − |yi − yides| − qi,

where qi denotes the number of neighboring agents that agent
i collides at the current time step. (xi

des,y
i
des) and (xi,yi)

denote the desired and the initial position of agent i.

B. Implementation Details

Choice of consensus matrix: For undirected graphs, a
useful choice of the weights ct(i, j) that rely on only local
information of the agents is the Metropolis weights.
We consider the following experimental settings:

• Cooperative case where all agents participate in consen-
sus process truthfully.

• Adversarial setting: We introduce a single Byzantine
adversarial agent (Agent-1) that does not participate in
consensus while other agents follow gossip averaging.

• Adversarial setting with ClippedGossip-styled up-
date: We introduce a single Byzantine adversarial agent
(Agent-1) that does not participate in consensus while
other agents follow resilient ClippedGossip-styled
update (see Algorithm 2).

C. Results and Inferences

We train 4 agents for 1900 episodes in all the three sce-
narios. Within each episode, agents are initialized at random
locations in the environment and continue for a maximum
of 100 steps, or until they reach their desired positions. For
each agent, we use the same multi-layer perceptron with
two hidden layers to approximate both the actor and critic
functions. We plot the true cumulative rewards obtained in
each episode for each agent and the team averaged returns
versus the number of episodes in Figure 1.
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(b) (d) (f)
Fig. 1: GridWorld environment: (a)-(b) Multi-agent cooperative setting, (c)-(d) Agent-1 is Byzantine, while gossip clipping
is turned off, (e)-(f) Agent-1 is Byzantine with robust averaging

As expected, all agents achieve near-optimal performance
in environments in the cooperative case. However, the pres-
ence of a single Byzantine adversarial agent in the case
where agents follow an ordinary consensus update, dis-
rupts the learning process. This is evident from Figure 1c,
where the adversarial agent maximizes its rewards while the
performance of other agents deteriorates compared to the
adversary-free scenario. When the agents adopt a more re-
silient ClippedGossip-styled update, the non-adversarial
agents can be observed to successfully negate the presence
of Byzantine adversary (see Figure 1e).

VI. CONCLUSION

In this study, we first demonstrate the vulnerability of
the algorithm proposed in [5] to adversarial attacks. Subse-
quently, we introduce the ClippedGossip update mech-
anism, which exhibits proven resilience against Byzantine
adversaries. Our analysis includes a convergence assessment
of our algorithmic variant amidst adversarial influence, em-
ploying linear function approximation. Through experiments
utilizing non-linear function approximation, we remark that
the presence of a single adversarial agent prioritizes its own
rewards while compromising rewards for others, which can
be circumvented by employing a ClippedGossip update.
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[10] Miloš S. Stanković, Marko Beko, and Srdjan S. Stanković. Distributed
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