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Abstract— This paper discusses a deterministic clustering
approach to capacitated resource allocation problems. In par-
ticular, the Deterministic Annealing (DA) algorithm from the
data-compression literature, which bears a distinct analogy to
the phase transformation under annealing process in statistical
physics, is adapted to address problems pertaining to clustering
with several forms of size constraints. These constraints are
addressed through appropriate modifications of the basic DA
formulation by judiciously adjusting the free-energy function in
the DA algorithm. At a given value of the annealing parameter,
the iterations of the DA algorithm are of the form of a
Descent Method, which motivate scaling principles for faster
convergence.

I. INTRODUCTION
Clustering is an integral task to many facility location

problems (FLPs) which come up in various forms in seem-
ingly unrelated areas of coarse control quantization [1],
minimum distortion problem in data compression [2], pattern
recognition [3], image segmentation [4], dynamic coverage
[5], neural networks [6], graph aggregation [7], and coverage
control [8], [9]. These problems each with different and
unrelated goals, in fact have some fundamental common at-
tributes - (1) obtaining an optimal partition of the underlying
domain, and (2) optimally assigning values from a finite (or
countable) set to each cell of the partition. The differences
in these problems come from having different conditions of
optimality and constraints. For example, the image segmen-
tation problem consists of optimally partitioning an image
into connected components. Similarly, the coarse control
quantization problem requires partitioning the state-space
and allocating a control value to each partition such that the
stability of the underlying dynamical system is guaranteed.

These optimization problems are largely non convex, com-
putationally complex and suffer from multiple poor local
minima that riddle the cost surface [10]. Many heuristics
have been proposed to address these difficulties. These in-
clude repeated optimization with random initialization (such
as Lloyd’s algorithm [11]) and efficient rules for cluster
splits and merges. In this context, simulated annealing (SA)
algorithm [12], which is motivated by an analogy to the sta-
tistical mechanics of annealing (and phase transformations)
in solids, was shown to be an effective iterative metaheuristic
probabilistic technique for approximating the global opti-
mum of an optimization problem, however with an annealing
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schedule so slow that the algorithm loses practicality in many
applications.

In this paper, we discuss the Deterministic Annealing (DA)
algorithm developed in the data-compression literature [13],
[14]. The DA algorithm enjoys the best of both the worlds.
On one hand it is deterministic, i.e., it does not wander
randomly on the energy surface. On the other hand, it is
still an annealing method designed to aim at the global
optimum, instead of going directly to a near local minima.
The DA algorithm, thus, has an ability to avoid poor local
optima while still maintaining a relatively faster annealing
schedule. It formulates an effective free-energy function
parameterized by an annealing parameter and this function is
deterministically optimized at successively increased values
of the annealing parameter.

While the original DA algorithm was developed in the con-
text of unconstrained clustering (i.e., clustering without any
capacity constraint), most real-world problems demand lim-
ited capacities on the cluster (resource) sizes, such as limited
link capacity in communication channels, and bounded ca-
pacities of vehicles in pick-up and delivery problems (PDPs).
Earlier approaches using DA have attempted modifications
to accommodate capacity constraints heuristically [15], [16],
which typically do not quantitatively satisfy the capacity
constraints - especially the cluster-size constraints. In this
paper, we describe the modifications that we have made to
adapt the DA algorithm to address several heterogeneous
capacity constraints. These modifications are designed such
that solutions do satisfy these constraints; we substantiate
their effectiveness through some practical scenarios. We also
derive some spatial scaling laws to obtain faster convergence
rate for the DA algorithm, thereby making the algorithm
tractable for handling complex combinatorial problems.

The rest of the paper is structured as follows. Section II
introduces the clustering problem and its variants involv-
ing constraints on cluster sizes. This is then followed by
an introduction the Deterministic Annealing framework in
Section III. We then discuss several modifications of the DA
algorithm to address capacity constraints of multiple types,
which is followed by application of the capacity constrained
DA on some practical scenarios. Section VI discusses scaling
laws and convergence rate associated with the DA algorithm,
followed by the section on conclusions and future work.

Remark: For any two natural numbers a, b ∈ N, the
index set {a, a + 1, . . . , b} is denoted by N[a,b]. The set of
non-negative real numbers is denoted by R+. The distance
between two vectors x, y ∈ Rn is considered to be squared-
Euclidean unless stated otherwise.], i.e., d(x, y) = ‖x−y‖22.



II. PROBLEM FORMULATION

The problems discussed in this paper have the objective of
obtaining resource (cluster) locations Y = {yj : j ∈ N[1,K]}
for a given set of demand points located at X = {xi : i ∈
N[1,N ]} such that the total sum of squared distances from
each demand point to its nearest resource is minimum. The
demand point follow the probability distribution p(xi), xi ∈
X . This results in the following classes of optimization
problems:

P1. No constraints: In this setting, the objective is to find
K resource locations such that the cumulative distance from
each demand point to its nearest resource is minimized; i.e.,

min
yj ,j∈N[1,K]

∑
i∈N[1,N]

p(xi)

{
min

j∈N[1,K]

‖xi − yj‖22
}

(1)

The classical DA algorithm by Rose [14] directly solves
this class of problems. This formulation does not take into
account any constraints on the size and type of resources.
Equivalently the problem is viewed as obtaining the partition
of the domain X of demand points into K clusters Cj ⊂
X ,∀j ∈ N[1,K] such that ∪jCj = X ;Cj1 ∩ Cj2 = φ, ∀j1 6=
j2, and allocate a representative resource to each cluster such
that the expected distance of the demand point xi ∈ Cj from
the corresponding resource location yj is minimized, i.e.

min
{yj},{Cj}

∑
j∈N[1,K]

∑
xi∈Cj

p(xi)‖xi − yj‖22. (2)

Note that these optimization problems are non convex
and computationally complex. For instance, the optimal
allocation of 20 resources in a domain of demand 30
points would require search over 30 million partitions,
which renders complete enumeration approach practically
infeasible. The constrained problems result in following
formulations:

P2. Heterogeneous capacity constraints:
In this scenario, the objective is to obtain a partition of the
underlying domain of demand points, such that the relative
size of the jth cluster Cj is equal to a pre-specified value
λj . Moreover, we assume

∑
j∈N[1,K]

λj = 1.

min
yj ,j∈N[1,K]

∑
i∈N[1,N]

p(xi)

{
min

j∈N[1,K]

‖xi − yj‖22
}

s.t.
∑

i∈N[1,N]

p(xi)vij = λj , j ∈ N[1,K] (3)

where, vij =

{
1, if xi ∈ Cj
0, else

Note that the constraints here seem to be independent of
the cost function. This is not so since the cluster size λj
depends on the partition {Cj}, which is a decision variable
for the optimization problem (3). This parameter is more
naturally incorporated in the cost function in the modified
algorithm that is presented in Section IV.

P3. Capacity constraints with multiple types of demand
points:
These constraints relate to the scenario where the demand
points are heterogeneous and have multiple types k ∈ N[1,p]

and the resources have capacity constraints given by λjk.
Here λjk denotes the capacity of resource j for demand point
of type k. We have the following optimization problem to
be solved:

min
yj ,j∈N[1,K]

∑
i∈N[1,N]

p(xi)

{
min

j∈N[1,K]

‖xi − yj‖22
}

s.t.
∑

i∈N[1,N]

p(xi)vijk = λjk, j ∈ N[1,K], k ∈ N[1,p]

where, vijk =

{
1, if xi ∈ Cj and xi is of type-k
0, else

(4)
Note that the capacitated problems inherit the complexity
of P1. In this paper, we describe an iterative algorithm
(developed in [13]) and its modifications to address various
capacity constraints, while still able to obtain good solutions.

III. DETERMINISTIC ANNEALING ALGORITHM:
A MAXIMUM-ENTROPY PRINCIPLE APPROACH

FOR CLUSTERING

At its core, the Deterministic Annealing (DA) algorithm
solves a facility location problem (FLP), i.e., given a set
of demand point locations X = {xi, i ∈ N[1,N ]}, find
K ∈ N facility locations Y = {yj , j ∈ N[1,K]} such that
the total weighted sum of the distance of each demand point
from its nearest facility location is minimized. The FLP is
mathematically described in (1). Borrowing from the data
compression literature [17], we define distortion as a measure
of the average distance of a demand point to its nearest
facility, given by D(X ,Y) =

∑
i∈N[1,N]

p(xi) min
j∈N[1,K]

d(xi, yj).

The solution to an FLP satisfies the following two necessary
(but not necessarily sufficient) properties:
• Voronoi partitions: The partition of the domain is such

that each demand point in the domain is associated only
to its nearest resource (cluster) location.

• Centroid condition: The resource location yj is at the
centroid of the jth cluster Cj .

Most algorithms for FLP (such as Lloyd’s [11]) are overly
sensitive to the initial resource locations. This is primarily
due to the distributed aspect of the FLPs, where any change
in the location of the ith demand point affects d(xi, yj) only
with respect to the nearest facility j. The DA algorithm
suggested by Rose [14], overcomes this sensitivity by allow-
ing fuzzy association of every demand point to each facility
through an association probability, p(yj |xi):

D̄(X ,Y) =
∑

i∈N[1,N]

p(xi)
∑

j∈N[1,K]

p(yj |xi)d(xi, yj). (5)

Thus the notion of average distance of a demand point
from its nearest facility is replaced by the weighted average
distance of demand points to all the facilities. The probability



distribution {p(yj |xi)} determines the trade-off between de-
creasing the local influence and the deviation of the modified
distortion D̄ from the original distortion measure D. The
uncertainties in facility locations {yj} with respect to the
demand point locations {xi} is captured by Shannon entropy
H(Y|X ) = −

∑
i∈N[1,N]

p(xi)
∑

j∈N[1,K]

p(yj |xi) log(p(yj |xi)),

widely used in data compression literature [17]. Therefore,
maximizing the entropy is commensurate with decreasing the
local influence.

This trade-off between maximizing the entropy and min-
imizing the distortion in Eq. (5) is addressed by seeking
the probability distribution {p(yj |xi)} that minimize the
free-energy, or the Lagrangian, given by F := D̄(X ,Y) −
1

β
H(Y|X ), where β is the Lagrange multiplier and bears a

direct analogy to the inverse of the temperature variable in an
annealing process. The association weights {p(yj |xi)} that
minimize the free-energy function are given by the Gibbs
distribution

p(yj |xi) =
e−βd(xi,yj)∑

j∈N[1,K]

e−βd(xi,yj)
. (6)

By substituting the Gibbs distribution (6), the corresponding
free-energy function is obtained as

F (Y) = − 1

β

∑
i∈N[1,N]

p(xi) log

( ∑
j∈N[1,K]

e−βd(xi,yj)
)
. (7)

In the DA algorithm, the free-energy function is determin-
istically optimized at successively increased values of the
annealing parameter β. The exact algorithm for the DA
algorithm is described in [14].

The readers are encouraged to refer to [18] for detailed
analysis on the complexity of the DA algorithm. For imple-
mentation on very large datasets, a scalable modification of
the DA is proposed in [19].

IV. CAPACITY CONSTRAINED DA

In this section, we develop an iterative algorithm to
address capacity constraints discussed in P2-P3 in Section
II. Adaptation of the DA algorithm for handling capacity
constraints in the context of locational optimization problems
was earlier discussed in [15]. However, the approach adopted
in [15] satisfies the constraints only under the assumption
of the uniform distribution of the demand points, and thus
renders the algorithm impotent to majority of the real-
world problems with non-uniform distribution of demand
points. This approach is discussed further in Section V,
where the approach adopted in [15] results in clusters with
highly inconsistent constraint-matching. We now describe
the methodology adopted in this paper for addressing these
constraints.

P2. Heterogeneous capacity constraints:
In the setting, we consider resources j ∈ N[1,K] with relative
heterogeneous capacities λj ∈ [0, 1] and the objective is to
allocate resources yj to the demand points xi ∈ X . We

address this in the DA framework by requiring

p(y1) : p(y2) : . . . : p(yK) = λ1 : λ2 : . . . : λK (8)

where p(yj) =
∑

i∈N[1,N]

p(xi)p(yj |xi) is the mass associated

with cluster Cj . The capacity constraints are incorporated
into the DA framework through a modified Gibbs distribution
given by

p(yj |xi) =
ηje
−βd(xi,yj)∑

j∈N[1,K]

ηje−βd(xi,yj)
(9)

where ηj ∈ [0, 1]∀j ∈ N[1,K] specifies the relative weight
of the jth resource yj and can be interpreted as the number
of copies of yj in the cluster Cj . During fuzzy initialization
when each demand point is uniformly associated with every
resource (i.e., β ≈ 0), ηj is initialized to λj and therefore
p(yj) = λj in the beginning of the annealing process.

The free-energy function is modified as

F (Y, η) = − 1

β

∑
i∈N[1,N]

p(xi) log

( ∑
j∈N[1,K]

ηje
−βd(xi,yj)

)
.

(10)
The update equation for the resource location yj , j ∈ N[1,K]

is obtained by setting the derivative of the modified free-
energy function w.r.t. yj to zero, which results in

yj =

∑
i∈N[1,N]

p(xi)p(yj |xi)xi

p(yj)
. (11)

Note that the update equations for the resource locations
have implicit dependence on the weight parameters ηj , which
in turn are again coupled with resource locations yj and
annealing parameter β through cluster probabilities p(yj).
The cluster probability (weight) p(yj) is given by

p(yj) =
∑

i∈N[1,N]

p(xi)p(yj |xi)

=
∑

i∈N[1,N]

p(xi)
ηje
−βd(xi,yj)∑

j∈N[1,K]

ηje−βd(xi,yj)

⇒ ηj =
p(yj)∑

i∈N[1,N]

p(xi)
e−βd(xi,yj)∑

j∈N[1,K]

ηje
−βd(xi,yj)

(12)

Noting that the desired mass associated with the resource yj
is λj , i.e., p(yj) = λj ,∀j ∈ N[1,K], the update equation for
ηj is obtained as

ηj =
λj∑

i∈N[1,N]

p(xi)
e−βd(xi,yj)∑

j∈N[1,K]

ηje
−βd(xi,yj)

. (13)

In the capacitated-DA algorithm, we deterministically
optimize the free-energy function in (10) at successive β
values by alternating between the Eq. (11) and Eq. (13)
until convergence.



P3. Capacity constraints with multiple types of demand
points:
In this setting, there are p-types of demand points and there
are capacity-constraints on size of each cluster for type of
demand point. We use λjk,∀j ∈ N[1,K], k ∈ N[1,p] to denote
the capacity requirements on resource j for demand point of
type k. Similar to the previous scenario, the modified Gibbs
distribution and the update equations are given by

p(yj |xi) =

∑
k∈N[1,p]

ηjke
−βd(xi,yj)

∑
j∈N[1,K]

∑
k∈N[1,p]

ηjke−βd(xi,yj)

yj =

∑
i∈N[1,N]

p(xi)p(yj |xi)xi

p(yj)

ηjk =
λjk∑

i∈N[1,N]

p(xi)
e−βd(xi,yj)∑

j∈N[1,K]

∑
k∈N[1,p]

ηjke
−βd(xi,yj)

. (14)

V. SIMULATION RESULTS

In this section, we consider the application of the DA
algorithm and its proposed adaptations for the problem types
P1-P3 through some real-world instances. In particular, we
consider the following problems:

A. P1. Image clustering and segmentation

In this scenario, we are given an image containing N
pixels (demand points). The location of the ith pixel, xi,
corresponds to the RGB value of the pixel, i.e., xi ∈ R3.
In image segmentation, the objective is to partition a digital
image into K segments (also known as superpixels) in order
to simplify and change the representation of the image into
something meaningful and easier to analyze. Furthermore, if
each of the color components requires one byte of storage,
then the size of the original image is equal to 3N bytes,
whereas the segmented image can be represented using
3K bytes, thereby resulting in image compression without
significant reduction in the quality of the image.

For the simulation, we consider an image (see Fig. 1a) of
dimensions 213×146, i.e., N = 31098. We aim to represent
the original image by just K = 8 superpixels, which results a
significant reduction in the size of the image. In this context,
the resource locations {yj} correspond to the RGB values
of the superpixels. The DA formulation described in Section
III directly solves the segmentation problem. The segmented
image with 8 superpixels is shown in Fig. 1b. As is seen
in the segmented image, the segments (clusters) retain the
important features of the original image, while reducing the
size of the original image by a factor of ∼ 3887.

Furthermore, we use the superpixels obtained using the
DA approach to produce very low-resolution output image
of dimensions 30 × 20 (see Fig. 1c). Such pixel arts are
often utilized by major commercial companies to convey
information on compact screens and making avatars for
social networks. This is achieved by averaging the RGB
values over a blob of pixels in the original image and
replacing the entire blob with a superpixel with the nearest

Fig. 1: Image segmentation using Deterministic Annealing based
clustering. (a) Original image, (b) 8-bit image obtained by clustering
the original image into 8 clusters, (c) Pixelated image using nearest-
neighbor representation.

RGB value. As is seen in the pixelated image in Fig. 1c, the
facial features and the sharp edges are retained.

B. P2. Allocating vehicles with heterogeneous capacities to
service shipments at demand points

In this scenario, we are given a set of N ∈ N demand
points located at X = {xi, i ∈ N[1,N ]} and the objective is
to cluster them into K ∈ N such that the sizes of the clusters
are in the ratio λ1 : λ2 : . . . : λK . This setting reflects the
scheme where larger vehicles are required to serve relatively
larger number of demand points.

For the simulation, we consider a 60 customers (demand
points) data from a logistics company (name withheld). We
are given a fleet of 6 vehicles with capacities of 10, 12, 12,
8, 11 and 7 units respectively. The proposed modification of
the DA algorithm results in automatic allocation of vehicles
to the demand points in the desired ratio. The algorithm is
also compared against the previous capacitated-DA proposed
in [15] where ηj ≡ λj ,∀j ∈ N[1,K] at all values of
the annealing parameter, i.e., ηj are not updated within
inner-iterations of the DA algorithm. The resulting solution
from the previous approach does not satisfy the capacity
requirements (in fact, results in very poor quality solution due
to non-uniform distribution of demand points). These results
are summarized in Fig. 2. The proposed algorithm also
outperforms the constrained k-means algorithm described in
[20] with smaller value of the cost function.

C. P3. Pick-up problem with multi-type capacity constraints

In this setting, we consider a pick-up problem from a
single depot and the objective is to find the arrival times of
the K ∈ N vehicles (resources) to pick up N ∈ N shipments
(demand points). Each shipment is equipped with a time-
window [ti,start, ti,end] and belongs to one of the p ∈ N
types. Additionally, the total amount of resource (vehicle)
j needing to be allocated to all shipments of kth-type are
λjk, j ∈ N[1,K], k ∈ N[1,p]. In this context, the location of
the shipment (demand point) xi is chosen as the mid-point
of the time-window, i.e., xi = 0.5(ti,start + ti,end). p(yj |k)
denotes the allocation of resource j to shipment of type-k
and is given by

p(yj |k) =
∑

i∈N[1,N]

p(xi)
ηjke

−βd(xi,yj)∑
j∈N[1,K]

ηjke−βd(xi,yj)
.



(a) (b)
Fig. 2: Allocation of vehicles to customers according to pre-specified capacities. Note that some of the demand points have multiplicity
more than one. (a) The capacitated-DA approach clusters the demand points in the pre-specified ratio 10 : 12 : 12 : 8 : 11 : 7. (b)
Results from the DA modification proposed in [15]. Clearly the algorithm fails to find the clusters with desired sizes due to non-uniform
distribution of demand points. In fact, the demand point in the top-left becomes a cluster in itself.

For the simulation, we choose an instance with 100 ship-
ments in total, 3 types of shipments and only 10 vehicles for
pickup. There are 34 shipments of type-1 (red), 36 shipments
of type-2 (magenta), and 30 shipments of type-3 (green).
The capacities are randomly chosen and subjected to these
capacities, the algorithm works well. In Fig. 3a, the blue
lines depict the vehicle arrival times, and the red, magenta
and green bars indicate the timewindows for the three types
of shipments respectively. Fig. 3b shows the effectiveness
of the DA algorithm in respecting the capacity constraints.
The plot on the left shows the capacity constraints (λjk) for
each type of shipment and vehicle. The plot on the right
shows the clustered mass information p(yj |k). Clearly, the
shapes of the two plots match each other. Also, the numerical
results find that the ratios of the capacity and clustered mass
are equal for all the vehicles, i.e., for all types of shipments
k ∈ N[1,p], we find p(yj |k) = λjk,∀j ∈ N[1,K].

VI. SCALING LAWS AND CONVERGENCE RATES

We now describe the spatial scaling laws for faster
convergence of the DA algorithm. In particular, we first
demonstrate that the inner-iterations on the resource location
yj correspond to a Descent Method and the rate of descent
depends on a scaling factor σ. Utilizing the fact that the
optimization problem is scale independent, we describe how
by appropriately scaling the demand point locations {xi},
the DA implementation can be expedited.

In the classical DA algorithm, at each iteration or equiva-
lently for each value of the annealing parameter βk, where k
signifies the kth iteration, it is required to solve the following
set of implicit equations

yj =

∑
i∈N[1,N]

p(xi)
e
−βk‖xi−yj‖

2
2∑

l∈N[1,K]

e
−βk‖xi−yl‖

2
2
xi

∑
i∈N[1,N]

p(xi)
e
−βk‖xi−yj‖

2
2∑

l∈N[1,K]

e
−βk‖xi−yl‖

2
2

, ∀j ∈ N[1,K]. (15)

Eq. (15) is a consequence of the centroid condition, i.e.,
the resource j is located at the centroid of the jth cell. This

corresponds to the following iteration scheme

yj(n+ 1) =

∑
i

p(xi)pk(yj(n)|xi)

pk(yj(n))
=: gkj (Y(n)), ∀j ∈ N[1,K],

(16)
where pk(yj(n)|xi) is the Gibbs distribution given by
e−βk‖xi−yj(n)‖

2
2∑

l∈N[1,K]

e−βk‖xi−yl(n)‖
2
2

, n = 0, 1, 2, . . ., and yj(0) is as-

signed the solution of Eq. (15) at the previous value of
the annealing parameter βk−1. Thus the above iteration
scheme (16) can be written as Y(n + 1) = gkj (Y(n)).
Note that the free-energy at nth iteration is given by

Fk(n) = − 1

βk

∑
i∈N[1,N]

p(xi) log

( ∑
j∈N[1,K]

e−βk‖xi−yj(n)‖
2
2

)
and hence

1

2

∂Fk(n)

∂yj(n)
=

∑
i∈N[1,N]

p(xi)pk(yj(n)|xi)(yj(n)− xi)

= pk(yj(n))(yj(n)− gkj (Y(n)))

⇒ 1

2
∇Fk(n) = Pk(n)(Y(n)− Y(n+ 1))

⇒ Y(n+ 1) = Y(n)− 1

2
Pk(n)−1∇Fk(n) (17)

where Pk(n) := diag{pk(y1(n)), . . . , pk(yK(n))}. There-
fore the iteration is of the form Y(n+1) = Y(n)+αkdk(n),
where the descent direction dk(n) = −Pk(n)−1∇Fk(n)
satisfies dk(n)T∇Fk(n) ≤ 0 with the equality being true
only when ∇Fk(n) = 0, which implies that the current
iteration scheme is essentially a Descent Method. This obser-
vation allows us to analyze convergence rate of the proposed
iteration scheme.

Let us now consider the scalability of the DA algorithm.
If we scale the variables Y = {yj , j ∈ N[1,K]} and
X = {xi, i ∈ N[1,N ]} by a scaling factor σ, i.e., define
Ỹ = {yj/σ, j ∈ N[1,K]} and X̃ = {xi/σ, i ∈ N[1,N ]},
the nature of optimization problem remains unchanged. In
fact, minimizing the free-energy F (βk,X ,Y) is equivalent
to minimizing the modified free-energy F (βkσ

2, X̃ , Ỹ), and



(a) (b)
Fig. 3: (a) Time-Windows for 100 shipments (3 types) and the Arrival Times (Cluster locations (blue lines)) for 10 vehicles. The three
colors (red, magenta and green) are used to indicate the type of shipments. (b) [Right]: Capacity constraint values for each type of
shipment and vehicle. [Left]: Capacity associated with each vehicle and each type of shipment. Clearly, the shapes indicate that the
capacities obtained by the constrained DA algorithm are in proportion with the capacities provided as constraints.

therefore the new iteration scheme is given by

Y(n+ 1) = Y(n)− σ2

2
Pk(n)−1∇Fk(n), (18)

where σ can be appropriately chosen to obtain faster conver-
gence rates. Another useful observation is that the scaling law
relates the spatial scaling factor σ to the annealing parameter
β. This is intuitive, since to resolve smaller clusters one
would require higher values of the annealing parameter
β̃k = βkσ

2 to start with.

VII. CONCLUSIONS
In this paper, we have discussed appropriate modifications

of the Deterministic Annealing (DA) algorithm to address
various heterogeneous capacity constraints. These modifi-
cations are achieved by appropriately modifying the free-
energy function and the corresponding Gibbs distribution.
The DA algorithm is found to achieve global minima (when
verifiable) in several test simulations where other heuristics
such as Llyod’s algorithm fare poorly. We demonstrate the
effectiveness of the proposed approach for some real-world
scenarios and comparison against the previous heuristics
reflect the strength of the proposed algorithm. We also
establish equivalence to Descent Method and identify spatial
scaling laws for faster convergence. We are investigating this
relation and our preliminary results of exploiting it to obtain
better convergence shows a great promise.
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