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Abstract
In today’s data-sensitive landscape, distributed learning emerges as

a vital tool, not only fortifying privacy measures but also stream-

lining computational operations. This becomes especially crucial

within fully decentralized infrastructures where local processing

is imperative due to the absence of centralized aggregation. Here,

we introduce DYNAWEIGHT, a novel framework to information ag-

gregation in multi-agent networks. DYNAWEIGHT offers substantial
acceleration in decentralized learning with minimal additional com-

munication and memory overhead. Unlike traditional static weight

assignments, such as Metropolis weights, DYNAWEIGHT dynamically

allocates weights to neighboring servers based on their relative

losses on local datasets. Consequently, it favors servers possess-

ing diverse information, particularly in scenarios of substantial

data heterogeneity. Our experiments on various datasets MNIST,

CIFAR10, and CIFAR100 incorporating various server counts and

graph topologies, demonstrate notable enhancements in training

speeds. Notably, DYNAWEIGHT functions as an aggregation scheme

compatible with any underlying server-level optimization algo-

rithm, underscoring its versatility and potential for widespread

integration.
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1 Introduction
Distributed and decentralized optimization

1
techniques have emerged

as pivotal strategies in tackling large-scale computational chal-

lenges across diverse domains [5, 13, 17]. In distributed optimiza-

tion, the computational task is divided among multiple processing

units or nodes, each contributing to the overall solution. This ap-

proach offers advantages such as scalability, fault tolerance, and

parallelism. Decentralized optimization takes this concept further

by removing the need for a central coordinator, allowing individual

nodes to collaboratively reach a solution through local interactions.

The importance of decentralized learning is underscored by their

applicability in various fields. In machine learning and artificial in-

telligence, these techniques enable the training of complex models

on massive datasets distributed across different locations, while

preserving data privacy and security [31]. Decentralized optimiza-

tion finds applications in decentralized control systems [10], sensor

networks [24], and multi-agent systems [3], where local decision-

making leads to emergent global behavior. Moreover, in fields like

logistics and transportation, these approaches facilitate real-time

decision-making in dynamic environments, optimizing resource

allocation and routing.

However, despite their immense potential, distributed and de-

centralized optimization methods come with several challenges.

One primary concern is communication overhead, as exchanging

information between nodes can lead to bottlenecks and increased

latency [2]. Ensuring convergence to a global optimum in decentral-

ized settings without a central coordinator poses another challenge,

requiring sophisticated algorithms that balance exploration and

exploitation [26]. Moreover, maintaining consistency and synchro-

nization across distributed systems in the presence of failures or

network delays is a non-trivial task [9]. Additionally, privacy and

security concerns arise when dealing with sensitive data distributed

across multiple nodes, necessitating robust encryption and access

control mechanisms [35].

Addressing these challenges requires a multidisciplinary ap-

proach, integrating techniques from optimization theory, distributed

systems, machine learning, and cryptography. Advances in commu-

nication protocols, consensus algorithms, and optimization meth-

ods tailored for distributed and decentralized environments are

crucial. Furthermore, developing robust frameworks for evaluating

the performance and scalability of these techniques across diverse

applications is essential for their widespread adoption.

1
In the literature, “distributed" and “decentralized" are frequently used interchange-

ably. While they differ slightly, both terms denote a setup lacking a central server

or compute. Each server processes private data locally, with information exchanged

between neighboring servers.

https://doi.org/10.1145/3746252.3761288
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In this paper, we introduce DYNAWEIGHT, an adaptive weighting

framework designed to address data heterogeneity across servers

in decentralized learning. Unlike static weighting schemes that

rely solely on network connectivity for server weighting during

information aggregation, DYNAWEIGHT utilizes server performance

on the datasets of neighboring servers (without explicitly sharing

the data). We empirically demonstrate that DYNAWEIGHT achieves
faster convergence compared to traditional non-adaptive weight-

ing schemes while remaining computationally efficient. Moreover,

DYNAWEIGHT is a versatile weighting scheme that can be integrated

with any suitable optimization algorithm.

2 Distributed Learning in Multi-Agent Systems
We consider a network comprising𝑁 interconnected servers (agents)

over a communication graphG(𝑉 ,E) collaboratively training a deep
neural network in a decentralized fashion. Each server 𝑖 possesses

its private dataset D𝑖 := (x𝑞
𝑖
, 𝑦

𝑞

𝑖
)𝑛𝑖
𝑞=1

comprising 𝑛𝑖 samples and

maintains its individual network copy with parameters 𝜃𝑖 ∈ R𝑑 .
While a server 𝑖 can exchange parameter vectors with its neighbors

N𝑖 , the confidentiality of local data is preserved. Homogeneity of

data distribution across servers is not mandated. It’s crucial to note

that this setup fundamentally differs from conventional federated

learning (FL), which resembles a centralized framework where a

central server communicates with a fraction of edge devices for

information exchange. The collective objective is to minimize the

team objective function:

𝐹 (𝜃 ) :=
𝑁∑︁
𝑖=1

1

𝑛𝑖

𝑛𝑖∑︁
𝑞=1

ℓ

(
NN𝜃 (x

𝑞

𝑖
), 𝑦𝑞

𝑖

)
, (1)

where NN𝜃 (x
𝑞

𝑖
) denotes the output of the neural network of the

𝑖th server given input x𝑞
𝑖
, and ℓ (·) represents any sample-level

loss function. However, (1) depicts a centralized framework for

minimizing the cumulative loss function, assuming that the network

parameters 𝜃 are shared across servers. A distributed version of the

above problem can instead be expressed as:

min

{𝜃1,𝜃2,...,𝜃𝑁 }

𝑁∑︁
𝑖=1

1

𝑛𝑖

𝑛𝑖∑︁
𝑞=1

ℓ

(
NN𝜃𝑖 (x

𝑞

𝑖
), 𝑦𝑞

𝑖

)
s.t. 𝜃1 = 𝜃2 = · · · = 𝜃𝑁 . (2)

However, in the absence of a centralized server, servers aim to

execute a consensus algorithm to ensure convergence of their pa-

rameters to a common vector. A typical decentralized optimization

algorithm executes following steps at 𝑘th iteration of each server:

𝜃
𝑘+ 1

2

𝑖
← 𝜃𝑘𝑖 − 𝜂

1

𝑛𝑖

𝑛𝑖∑︁
𝑞=1

∇𝜃𝑖 ℓ
(
NN𝜃𝑖 (x

𝑞

𝑖
), 𝑦𝑞

𝑖

)
, (Gradient step)

𝜃𝑘+1𝑖 ←
∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗𝜃
𝑘+ 1

2

𝑗
, (Consensus)

where 𝜂 > 0 denotes the step-size, while weights 𝑤𝑖 𝑗 ≥ 0, with∑
𝑗∈N𝑖 𝑤𝑖 𝑗 = 1, signify the relative importance of the 𝑖th server and

its neighbors in updating the parameter vector 𝜃𝑖 . It’s important to

recall that during the gradient step, each server computes the gra-

dient of the loss function solely based on its local (private) data and

executes a gradient descent. Furthermore, in practical implemen-

tations, this update process can be further accelerated by utilizing

momentum-based optimization algorithms, such as AdaGrad [4] or

Adam [20].

The next phase involves executing a consensus update among

neighboring servers utilizing weights𝑤𝑖 𝑗 . There exist various meth-

ods for selecting these consensus weights. The prevalent approach

involves employing equal weighting across all servers, termed as

the simple weighting scheme. Alternatively, another viable option

is the utilization of Metropolis weights, closely associated with the

Metropolis-Hastings algorithm. The Metropolis weights are given

as:

𝑤𝑖 𝑗 =


1

1+max (𝑑𝑖 ,𝑑 𝑗 ) , if 𝑗 ∈ N𝑖 , 𝑖 ≠ 𝑗

1 −∑𝑙∈N𝑖
𝑤𝑖𝑙 , if 𝑖 = 𝑗

0, else

, (3)

where 𝑑𝑖 represents the degree of 𝑖th-server. It is worth noting

that Metropolis weights can be derived through local information

exchange, obviating the need for servers to possess knowledge of

the entire communication topology.

Heterogeneous data: A notable challenge with static (fixed)

weighting schemes lies in their inability to accommodate data het-

erogeneity across servers. To illustrate, consider an extreme sce-

nario where we aim to train a DNN with 𝐾 classes. In this scenario,

the first (𝑁 − 1) servers exhibit uniformly distributed data across

(𝐾−1) classes, while the last server exclusively accesses data points
from the 𝐾 th

class. Following the gradient step, the parameter vec-

tors of the first𝑁−1 servers align closely, whereas the parameters of

the 𝑁 th
server diverge significantly. However, if servers employ, for

instance, an equal weighting scheme, the information from the last

server may be disregarded during the consensus step. Consequently,

the remaining servers have limited opportunity to effectively learn

to predict the 𝐾 th
class with reasonable accuracy. This limitation

underscores the necessity for an adaptive weighting scheme, one

that dynamically adjusts weights based on gradient updates and

alignment with other servers.

3 Related Work
Federated learning (FL): Standard practice for training neural

networks involves collecting all data on a central server for model

training, which offers simplicity and potentially higher accuracy

due to access to comprehensive datasets. However, this method

poses significant privacy risks and can lead to high communica-

tion costs [1]. Federated Learning (FL), on the other hand, enables

decentralized training by keeping data on local devices and only

sharing model updates [19]. This approach enhances privacy [28]

and reduces data transfer costs but faces challenges such as data het-

erogeneity [23], slower convergence [29], and increased complexity

in coordinating multiple devices. Additionally, FL’s reliance on a

central server introduces a single point of failure and limits scalabil-

ity due to significant communication bandwidth requirements. To

overcome these challenges, decentralized learning is preferred [8],

as it distributes both data and computational tasks across multiple

nodes, eliminating the need for a central server.

Decentralized learning involves two primary steps: (a) the Gradi-

ent step, where each server computes gradients on its private data
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and performs a gradient descent (or its momentum variant) on its pa-

rameter values, and (b) the Consensus or Gossip step, where servers

aggregate parameter values from neighboring servers. Enhancing

the speed of decentralized learning relies on three fundamental

concepts: crafting efficient optimization algorithms for streamlined

gradient updates, advancing faster consensus algorithms, and de-

vising optimal communication topologies [11, 22, 25, 27] to balance

the trade-off between communication and computation efficiency.

The literature on optimization algorithms spans from simple

gradient-based updates [34] to momentum-based approaches like

AdaGrad [4] and Adam [20]. Similarly, gossip algorithms typically

employ standard weighting schemes such as simple gossip, max-

degree [12], and Metropolis weights [30]. Recent studies suggest

that static exponential topology [21, 32] is efficient across com-

monly used topologies like ring, star, and line. However, in multi-

agent networks, topology often emerges based on factors like geo-

graphical proximity, limiting control over it.

While selecting an efficient optimization algorithm for the gra-

dient step is feasible, further progress depends on faster consensus

updates [6, 18]. Unfortunately, beyond basic weighting schemes,

there have been limited advancements in accelerating the Gossip

step. This limitation is especially critical in scenarios of extreme

data heterogeneity, where simple gossip algorithms exhibit slow

convergence.

4 DYNAWEIGHT: Dynamic Neighborhood
Weighting via Train Loss

Intuition behind dynamic weighting: When data distribution

across servers is similar, one would naturally anticipate similarity

in their parameter vectors. However, if one server exhibits signifi-

cantly different data distribution, neighboring servers’ models eval-

uated on this dataset would yield higher loss values. Consequently,

neighboring servers would need to adjust their parameters accord-

ingly. As parameter vectors start aligning, the relative importance

of servers should also adjust accordingly. Static weighting schemes,

however, neglect data distribution and base weights solely on con-

nectivity. This underscores the necessity of weighting neighboring

servers during consensus updates based on their model evaluation

statistics on a server’s own private dataset.

In a typical distributed learning framework, servers exchange

their network parameters solely with their neighboring servers.

Expanding on this information exchange, we additionally utilize

the shared parameters to assess the neighboring server’s model

performance on the dataset of the server with which parameters

have been exchanged. For instance, let us consider servers 𝑖 and 𝑗

as neighbors. When server 𝑗 shares its updated parameters (𝜃
𝑘+ 1

2

𝑗
)

with the 𝑖th-server (and vice versa), apart from directly conducting

consensus, the 𝑖th server also evaluates (without storing) the model

NN𝜃 𝑗
on its private dataset D𝑖 and computes the loss L𝑗𝑖 . This

procedure is independently executed by each server.

From the perspective of the 𝑖th-server, if the losses L𝑖𝑖 and L𝑗𝑖

differ significantly, this indicates a mismatch in the underlying data

distributions between the two servers. Specifically, if L𝑗𝑖 > L𝑖𝑖 ,

it suggests that server 𝑗 ’s model does not perform well on the

𝑖th-server’s data. On the other hand, from the perspective of the 𝑗 th-

server, if its model consistently achieves lower loss values across

all its neighboring servers on average, it indicates that server 𝑗 ’s

model is well-trained and performs effectively across the diverse

datasets of its neighbors. Consequently, neighboring servers should

aim to align their parameters with those of server 𝑗 . This alignment

can be achieved by prioritizing server 𝑗 during the consensus step.

We formalize this intuition using a novel dynamic weighting

framework, DYNAWEIGHT. DYNAWEIGHT adaptively weighs servers

based on the performance of their models on the private datasets of

neighboring servers, without ever accessing those datasets directly.

The framework is described in Figure 1. After the gradient step at

𝑘th-iteration, each server updates their parameters as {𝜃𝑘+
1

2

𝑖
}. The

consensus step comprises of three phases:

1) Readout Phase: In this phase, servers exchange their parameter

vectors with neighboring servers. The received model parameters

are then used by the servers in the subsequent evaluation phase.

2) Evaluation Phase: Each server evaluates the models of its

neighboring servers on its own local dataset and records the loss

values L 𝑗𝑖 . Here, L 𝑗𝑖 represents the loss evaluated by the 𝑖th server

on its dataset using the 𝑗 th server’s parameters. These loss values

are then communicated back to the respective servers, meaning

server 𝑖 sends the loss value L𝑗𝑖 to server 𝑗 , and so forth. Note that

the loss values are scalars, and exchanging them entails minimal

communication cost. Upon receiving the respective loss values,

each server computes its importance (centrality) 𝑝 𝑗 given as:

𝑝 𝑗 =
1 + 𝑑 𝑗∑

𝑚∈ 𝑗∪N𝑗
L𝑗𝑚

, (4)

where 𝑑 𝑗 represents the degree of the 𝑗
th
-server. Mathematically,

𝑝 𝑗 is interpreted as the inverse of the average loss values of the

𝑗 th-server on its own data and the data of its neighbors. We consider

the inverse of the average loss because servers with smaller average

loss are likely to perform better on the datasets of other servers as

well. Therefore, other servers should aim to align their parameters

closely with those having larger centrality.

3) Gossip Phase: In the final phase of the consensus step, servers

execute a weighted gossip algorithm. The weights are based on

the centrality of different servers computed in the previous phase.

This phase begins with servers sending their centrality values to

their neighboring servers. As before, centrality is a scalar quantity

and entails minimal communication requirements. This exchange

is combined with the previously updated parameter values 𝜃
𝑘+ 1

2

𝑖
shared during the readout phase. Based on the centrality values,

each server 𝑖 computes the aggregation weights𝑤𝑖 𝑗 as follows:

𝑤𝑖 𝑗 =
𝑝 𝑗∑

𝑘∈𝑖∪N𝑖
𝑝𝑘
. (5)

The overall algorithm is described in Algorithm 1.

Remark 1. In DYNAWEIGHT, servers also maintain a ghost copy of
their neural network architecture. This ghost copy is used to evaluate
the loss values on their private datasets after receiving the parameters
from neighboring servers. Additionally, the same shared network

parameters 𝜃
𝑘+ 1

2

𝑖
are accessed twice: once during the readout phase

and again during the gossip phase. Unlike standard non-adaptive
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(a) (b) (c)

Figure 1: Adaptive weighting via DYNAWEIGHT. (a) Each server broadcasts its locally updated parameters {𝜃𝑘+
1

2

𝑖
} to its neighbors.

(b) Upon receiving parameters from neighbors, servers perform ReadOut(·) and evaluate loss on their private datasets using

neighbors parameters. This allows each server to evaluate its importance {𝑝𝑘
𝑖
}. (c) Along with {𝜃𝑘+

1

2

𝑖
}, the importance {𝑝𝑖 } is

shared to locally evaluate aggregation weights {𝑤𝑘
𝑖 𝑗
}.

Algorithm 1 Distributed Learning (DYNAWEIGHT)

Require: 𝑁 servers, sub datasets (D1,D2, . . . ,D𝑁 ), communica-

tion topology G(𝑉 ,E), # of epochs 𝐾 , # of consensus steps 𝐶
1: Randomly initialize the model parameter 𝜃0

𝑖
for each server

2: for each epoch 𝑘 = 0, 1, . . . , 𝐾 − 1 do
3: for each server 𝑖 = 1, 2, ...., 𝑁 do
4: for each mini batch 𝑏 from D𝑖 do

5: 𝜃
𝑘+ 1

2

𝑖
← 𝜃𝑘

𝑖
− 𝜂 1

𝑛𝑖

∑
D𝑖
∇𝜃𝑖 ℓ (𝑏 |𝜃𝑘𝑖 ) ⊲ Gradient step

6: end for
7: end for
8: for each server 𝑖 = 1, 2, ...., 𝑁 do

9: Broadcast {𝜃𝑘+
1

2

𝑖
} to neighbors ⊲ Readout

10: for each server 𝑗 ∈ N𝑖 do
11: Evaluate {L𝑗𝑖 } on local dataset

12: Broadcast back {L𝑗𝑖 } to server 𝑗

13: end for ⊲ Evaluation

14: Compute centrality 𝑝𝑖 ← 1+𝑑𝑖∑
𝑚∈𝑖∪N𝑖

L𝑖𝑚

15: for each server 𝑗 ∈ N𝑖 do
16: 𝑤𝑖 𝑗 ←

𝑝 𝑗∑
𝑞∈𝑖∪N𝑖 𝑝𝑞

17: end for
18: for consensus step 𝑐 = 1, 2, ....,𝐶 do

19: 𝜃𝑘
𝑖
← ∑

𝑗∈N𝑖
𝑤𝑖 𝑗𝜃

𝑘+ 1

2

𝑗
⊲ Gossip

20: end for
21: end for
22: end for

weighting schemes, DYNAWEIGHT also requires servers to broadcast
loss and centrality values, both of which are scalars. Consequently,
the additional computational and memory overheads are minimal
compared to static weighting schemes.

5 Experimental Results
In this section, we present the evaluation of the proposed frame-

work, DYNAWEIGHT, on thewidely-used classification datasets:MNIST,

CIFAR10 and CIFAR100. The experiments are conducted across

various model architectures and under multiple graph topologies,

namely ring, line, chordal, and static exponential, while varying

the number of servers, 𝑁 = 8, 16, and 32. To provide a comprehen-

sive performance comparison, we benchmark DYNAWEIGHT against

several baseline approaches:

• Centralized training of neural networks serves as a critical
baseline, providing a benchmark for performance evaluation.

This approach involves training the model using all available

data on a single, centralized system, ensuring the model

benefits from the entire dataset without the constraints of

data distribution across multiple servers. The results from

centralized training offer a performance reference point to

compare against distributed learning methods.

• FedAvg involves each (or a fraction of) server communi-

cating its model parameters to a centralized server at every

communication round. The central server aggregates these

parameters and sends the updated model back to all servers.

While FedAvg provides a centralized performance bench-

mark, its major drawback is the communication complexity,

which scales linearly with the number of servers, potentially

leading to significant communication overhead in large-scale

deployments. In our implementation, we assume that all
servers send their model parameters to the central server

at each communication round. Thus, our implementation

resembles a centralized setting, but model updates at the

edge servers occur locally.

• Simple Weights is a static consensus-based distributed

learning method. In this approach, during the consensus

step, each server assigns equal weights to its neighboring
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Figure 2: Performance comparison of all approaches on the MNIST dataset with LeNet architecture for various graph topologies,
evaluated across different server counts (𝑁 = 8, 16, and 32). The y-axis represents the average test accuracy, computed over 3
random seeds and averaged across all servers. The shaded regions indicate the 95% confidence interval.

servers when aggregating model parameters. This method

ensures uniform contribution from all neighboring nodes,

providing a straightforward and balanced way to achieve

consensus across the network.

• Metropolis Weights is similar to the Simple Weights ap-

proach but usesweights derived from theMetropolis-Hastings

algorithm instead of assigning equal weights to neighbor-

ing servers during the consensus step. This method takes

into account the degree of each server, ensuring a more bal-

anced and efficient aggregation of model parameters based

on network connectivity (see (3)).

Note: Since the Centralizedmethod has access to the whole
dataset and the FedAvg method aggregates parameters from
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(c) Chordal Topology

Figure 3: Performance comparison of all approaches on the CIFAR10 dataset with ResNet20 architecture for various graph
topologies, evaluated across different server counts (𝑁 = 8, 16, and 32). The y-axis represents the average test accuracy, computed
over 3 random seeds and averaged across all servers. The shaded regions indicate the 95% confidence interval.

all the servers, it is expected that both will perform better
compared to decentralized methods. They are used solely as
centralized benchmarks.

5.1 Experimental Setup
5.1.1 Datasets. We present the analysis on three widely used com-

puter vision datasets:MNIST [16], CIFAR10 [14], and CIFAR100 [14].
A detailed description of these datasets is provided in appendix A.

5.1.2 Network Topology. - Communication efficiency is a key fac-

tor in decentralized learning, and it depends on the average degree
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of the network’s topology. For MNIST and CIFAR10 datasets, we

evaluate performance across ring, line, and chordal network topolo-

gies, considering different numbers of servers (𝑁 = 8, 16, 32). In

the case of the CIFAR100 dataset, we conduct experiments using an

undirected static exponential graph topology with 32 servers. For

more detail see appendix B.

5.1.3 Data Distribution. - In cases of homogeneous data distri-

bution across servers, DYNAWEIGHT behaves similarly to a simple

weighting scheme. However, decentralized learning faces its pri-

mary challenge with heterogeneous, non-IID data. To address this,

we test various approaches under heterogeneous data regimes. For

all three classification datasets, servers with IDs that are multiples

of 4 receive a uniform distribution across all classes, though with

a limited number of data points per class. The remaining servers

receive data from only 3 randomly chosen classes out of the 10

available for MNIST and CIFAR10, while servers not multiple of 4

for CIFAR100 are assigned data from 10 to 15 randomly selected

classes out of the 100 available.

5.1.4 Model Architecture and Hyperparameters. We employ well-

established deep neural network architectures for classification

tasks: LeNet [15] for MNIST, ResNet-20 [7] for CIFAR10, and ResNet-
56 [7] for CIFAR100. A detailed description of the model architec-

tures and their corresponding hyperparameter configurations is

provided in Appendix C.

5.2 Results Discussion
Figure 2 illustrates the average test accuracy across epochs when

training the LeNet architecture on the MNIST dataset, using ring,

line, and chordal graph topologies with 𝑁 = 8, 16, and 32 servers. It

is evident that DYNAWEIGHT achieves faster convergence compared

to static weighting methods for all graph sizes and topologies. No-

tably, for 𝑁 = 8, all methods converge to 99% test accuracy, which

aligns with the performance of centralized training.

Performance degradationwith an increasednumber of servers
However, as the graph size increases, the performance gap between

centralized training and the other methods becomes more pro-

nounced. This occurs because, with larger graph sizes, each server

receives fewer data points, leading to greater data heterogeneity.

Consequently, the local gradient of each server becomes more mis-

aligned with those of its neighboring servers. During the gossip

step, this misalignment causes higher variance when aggregating

model parameters from neighboring servers, which slows down

learning and reduces the final test accuracy. Since DYNAWEIGHT dy-

namically adjusts the weights for neighboring servers based on

their relative losses on local datasets, it outperforms static weight-

ing methods for larger graph sizes (𝑁 = 16 and 32), achieving a

2 − 5% improvement in converged test accuracy.

Remark 2. When data heterogeneity is high across servers, de-
centralized learning methods struggle to match the test accuracy of
centralized approaches. This is because decentralized models rely on
local data, which may not fully represent the overall dataset, leading
to imbalanced learning. As a result, even with adaptive schemes like
DYNAWEIGHT, the performance tends to align more closely with that
of FedAvg, which serves as the benchmark in such settings.

Impact of Network Topology on Performance Graph topolo-

gies with higher average degrees typically feature larger spectral

gaps, which promote faster information exchange between nodes

and consequently lead to quicker convergence in decentralized op-

timization tasks. This trend is clearly observed in our results, as

shown in Figures 2 and 3. Specifically, the chordal graph achieves

superior average test accuracy compared to both the ring and line

graphs due to its higher average degree.

Generalizability and Scalability To assess the generalizability

and scalability of DYNAWEIGHT, we evaluate its performance on the

CIFAR10 dataset with the ResNet-20 architecture, and on the CI-
FAR100 dataset with the ResNet-56 architecture. Figure 3 shows

the average test accuracy of ResNet-20 trained on CIFAR10 across
ring, line, and chordal topologies with 𝑁 = 8, 16, and 32 servers.

As demonstrated, DYNAWEIGHT consistently converges faster than

static weighting methods across all graph sizes and topologies.

Notably, for graph sizes 𝑁 = 8 and 16, DYNAWEIGHT outperforms

static weighting methods with a significant performance gain of

8−10%. Even with𝑁 = 32, DYNAWEIGHT retains a notable advantage,
delivering an approximate 5% improvement over static weighting

approaches. Similarly, Figure 4 presents the average test accuracy of

ResNet-56 trained on CIFAR100 with𝑁 = 32 servers. Note that while

MNIST and CIFAR10 have fewer classes, CIFAR100 has 100 classes,
and our experimental setup introduces significant data heterogene-

ity across servers. To accelerate decentralized learning, we adopt

an undirected static exponential graph topology [33], which has

been proven to balance the trade-off between communication and

computation more effectively than other topologies. Once again,

DYNAWEIGHT demonstrates faster convergence and achieves 2% im-

provement in accuracy over static weighting methods.
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Figure 4: Performance comparison of all approaches on the
CIFAR100 dataset with ResNet56 architecture for undirected
static exponential graph with 32 servers. The y-axis repre-
sents the average test accuracy across all servers.

Graph Weight Evolution Figure 5 illustrates the evolution of

DYNAWEIGHT weights (𝑤𝑖 𝑗 ) for server 0 in the ring topology (top

plot) and for server 7 in the line topology (bottom plot), with a total

of 8 servers in the graph topology, on the MNIST dataset. In the ring

topology, the neighboring nodes for server 0 are servers 1, 7, and

0 (itself), all of which contribute during the model-parameter ag-

gregation (gossip step). The figure shows how the weight assigned
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Figure 5: Evolution of DYNAWEIGHTweights (𝑤𝑖 𝑗 ) for the neigh-
boring servers (including itself) of server 0 (top plot) and
server 7 (bottom plot) in ring and line graph topologies, re-
spectively, with a total of 8 servers, on MNIST dataset. The
shaded regions indicate the 95% confidence interval.

to the model parameters of servers 0, 1, and 7 evolves over the

epochs during the aggregation process for server 0. As explained in

Section 5.1.3, server 7 has a more balanced data distribution across

all classes, while servers 0 and 1 only have data from three classes.

This data imbalance leads DYNAWEIGHT to initially assign a higher

weight to server 7. Over time, as the servers exchange information

during the gossip steps, the weights for all neighboring servers

converge to approximately 1/3, indicating that, after consensus,

each server contributes equally to the aggregated model. A similar

pattern is observed in the line topology. In this case, server 7 has

neighboring servers 6 and 7 (itself). Initially, DYNAWEIGHT assigns a

higher weight to server 7 due to its more balanced dataset, but as

training progresses, the weights for both servers converge to 0.5,

reflecting a more balanced contribution during the aggregation.

Consensus Error Figure 6 shows the averaged consensus error on
the MNIST dataset for a ring topology with 8 servers. The consen-

sus error is defined as the average sum of the Euclidean distances

between each server’s model parameters and the averaged model

parameters across all servers. As shown in the figure, DYNAWEIGHT’s
consensus error initially increases before gradually decreasing. In

contrast, static weighting schemes cause the consensus error to

decrease rapidly from the start, limiting the exploration of the
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Figure 6: Consensus error on the MNIST dataset for the ring
topology with 8 servers, averaged over 3 random seeds and
across all servers. The shaded regions indicate the 95% confi-
dence interval.

parameter space by the server models. DYNAWEIGHT allows the con-

sensus error to decrease more gradually, which facilitates more

effective exploration of the parameter space by each server’s model.

This adaptive approach results in better convergence of test accu-

racy across various datasets, model architectures, graph topologies,

and server sizes when compared to static weighting schemes.

DYNAWEIGHT provides a robust framework for decentralized learn-

ing, ensuring that sensitive data stays local to each server. Unlike

centralized approaches, where data is aggregated or shared at a

central location, DYNAWEIGHT enables each server to perform lo-

cal computations while only sharing model parameters during the

aggregation step. While DYNAWEIGHT does introduce some commu-

nication overhead compared to static weighting schemes due to the

need for servers to broadcast both model parameters and additional

scalar values such as loss and centrality, this overhead remains

minimal in terms of computational and memory costs. These minor

overheads are far outweighed by the advantages of adaptive weight-

ing, which results in faster convergence and improved accuracy,

especially in scenarios with heterogeneous data distributions.

While the framework is robust, addressing adversarial agents

remains an area for future exploration. One approach could involve

detecting and excluding servers with loss values that significantly

deviate from the expected distribution, thereby reducing the impact

of malicious or misbehaving agents. This adaptability underscores

the framework’s flexibility and potential for development into more

secure, adversarial-resistant systems.

6 Conclusion
In this paper, we introduced DYNAWEIGHT, an adaptive weighting

framework designed to tackle the challenges of data heterogeneity

in decentralized learning environments. Unlike static weighting

schemes that rely solely on network connectivity, DYNAWEIGHT dy-

namically adjusts weights based on model performance on neigh-

boring servers’ datasets, ensuring more efficient and balanced learn-

ing. Our empirical results onMNIST, CIFAR10, and CIFAR100 demon-

strate that DYNAWEIGHT converges faster than traditional non-adaptive
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schemes while incurring minimal computational and memory over-

head. This framework enables more robust and scalable decentral-

ized learning systems capable of handling diverse and unevenly

distributed data efficiently. Due to resource constraints, we could

not test on larger datasets like ImageNet. Future work will include

a broader set of results and a theoretical analysis of DYNAWEIGHT.

A Datasets
• The MNISTdataset [16] is a widely used benchmark for eval-

uating image classification algorithms. It consists of 70𝑘

grayscale images of handwritten digits from 0 to 9, each

sized 28𝑋28 pixels. The dataset is divided into 60𝑘 training

images and 10𝑘 testing images.

• The CIFAR10 [14] image classification dataset consisting of

10 classes, comprising 60𝑘 color images, each sized 32𝑋32

pixels. Each class has 6000 images, with 5000 for training

and 1000 for testing.

• TheCIFAR100 [14] dataset is a more complex image classifica-

tion dataset, comprising 60𝑘 color images, each sized 32𝑋32

pixels, categorized into 100 different classes. Each class has

600 images, with 500 for training and 100 for testing.

B Network Topology
• Ring Graph - A ring graph is an undirected graph in which

each node connects to its two immediate neighbors, forming

a closed loop.

• Line Graph - A line graph is an undirected graph in which

each node (except endpoints) connects to two neighbors.

• Chordal Graph - A chordal graph is an undirected graph in

which every cycle of four or more vertices has a chord—an

edge that connects two non-adjacent vertices in the cycle.

• Static Exponential Graph - A static exponential graph is a

directed graph in which each node connects to exponen-

tially increasing distances nodes. But in our experiments we

consider it as an undirected graph.

C Model Architecture and Hyper-parameters
• LeNet - For MNIST dataset classification, we use LeNet [15]

network architecture consisting of two convolutional layers

followed by two fully-connected layers. The first convolu-

tional layer has 32 filters with a kernel size of 3x3, and the

second has 64 filters with the same kernel size. Each con-

volutional layer is followed by a max-pooling layer with a

filter size of 2x2 and a stride of 2. After the convolutional

layers, there are two fully-connected layers: the first has

128 units, and the second outputs 10 units, corresponding to

the 10 classes in the dataset. We use the same model archi-

tecture for all baselines and servers, along with consistent

hyperparameters. The batch size is set to 16, and we use the

Adam optimizer with an initial learning rate of 10
−4
, which

changes over the training epochs. For 𝑁 = 8 and 𝑁 = 16

servers, the learning rate is halved every 20 epochs, and the

number of consensus steps are set to 𝐶 = 1. For 𝑁 = 32

servers, the learning rate remains constant until the 100
𝑡ℎ

epoch, after which it is exponentially reduced to 10
−6

by the

Figure 7: Ring Graph, Line Graph, Chordal Graph, and Static-
Exponential Graph (undirected)

end of training, and the number of consensus steps are set

to 𝐶 = 2.

• ResNet-20 - For CIFAR10 dataset classification, we use the
standard ResNet-20 [7] architecture with 0.27𝑀 trainable

parameters. We use the same model architecture for all base-

lines and servers, along with consistent hyperparameters.

The batch size is set to 16, and we use the Adam optimizer

with an initial learning rate of 10
−4

, which changes over the

training epochs. For all server setting (i.e. 𝑁 = 8, 16, and 32

), the learning rate remains constant until the 100
𝑡ℎ

epoch,

after which it is exponentially reduced to 10
−6

by the end of

training, and the number of consensus steps are set to𝐶 = 2.

• ResNet-56 - For CIFAR100 dataset classification, we use the
standard ResNet-56 [7] architecture with 0.85𝑀 trainable

parameters. We use the same model architecture for all base-

lines and servers, along with consistent hyperparameters.

The batch size is set to 16, and we use the Adam optimizer

with an initial learning rate of 10
−4

, which we decay linearly

over the training epoch, and the number of consensus steps

are set to 𝐶 = 2.

D GenAI Usage Disclosure
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phrasing and language refinement during the editing process. All

technical content and original writing are our own, and no text was
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