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Abstract— This paper presents a novel distributed nonlinear
protocol for minimizing the sum of convex objective functions
in a fixed time under time-varying communication topology.
In a distributed setting, each node in the network has access
only to its private objective function, while exchange of local
information, such as, state and gradient values, is permitted
between the immediate neighbors. Earlier work in literature
considers distributed optimization protocols that achieve con-
vergence of the estimation error in a finite time for static
communication topology, or under specific set of initial con-
ditions. This study investigates first such protocol for achieving
distributed optimization in a fixed time that is independent of
the initial conditions, for time-varying communication topology.
Numerical examples corroborate our theoretical analysis.

I. INTRODUCTION

Over the past decade, distributed optimization prob-
lems [1] gained considerable attention in the control, opti-
mization and machine learning community. This is primarily
due to increase in the size and complexity of datasets, along
with privacy concerns and communication constraints among
multiple agents. Distributed methods for solving optimization
problems find applications in several domains including, but
not limited to, distributed multi-agent coordination and esti-
mation in sensor networks [2], formation control [3], model-
predictive control [4], economic dispatch [5], resource-
allocation [6], cooperative multi-agent motion planning [7]
and large-scale machine learning [8] (see [9], [10] for a de-
tailed discussion on applications of distributed optimization
in control theory). In a distributed optimization problem, the
goal is to cooperatively minimize the sum of local objective
functions, each of which is known to only one agent. In
particular, the distributed convex optimization problems take
the following form:

min
x∈Rd

F (x) =

N∑
i=1

fi(x), (1)

where F (·) is the team objective function, and function fi :
Rd → R represents the local objective function of the ith

agent.
Most prior work on distributed optimization primarily con-

cerned with developing discrete-time algorithms that ensure
that each agent in the network converges to the optimal
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point of F (·) or its neighborhood [1], [11], [12]. The dy-
namical systems perspective of continuous-time optimization
has gained much attention in past years for distributed
optimization [13], [14], [15], [16]. This viewpoint enables
use of tools from Lyapunov theory and differential equations
for stability and convergence-rate analysis.

Many practical applications, such as time-critical clas-
sification, autonomous distributed systems for surveillance
and economic dispatch in power systems, often undergo
frequent and severe changes in operating conditions, and
thus require quick availability of the optimal solution from
any initial condition. Most of the aforementioned work
studies dynamical systems with asymptotic or exponential
convergence guarantees to the optimal point. In contrast
to asymptotic stability or exponential stability that pertains
to convergence of the solution to the equilibrium point as
time tends to infinity, finite-time stability is a concept that
guarantees convergence of solutions in a finite amount of
time [17]. Fixed-time stability (FxTS), as defined by the
authors in [18], is a stronger notion than finite-time stability
(FTS), where the time of convergence does not depend upon
the initial condition, and is uniformly bounded for all initial
conditions.

In [19], a continuous-time zero-gradient-sum (ZGS) with
exponential convergence rate was proposed, which, when
combined with a finite-time consensus protocol, was shown
to achieve finite-time convergence in [20]. A drawback of
ZGS-type algorithms is the requirement of strong convex-
ity of the local objective functions and the requirement
of specific initial conditions {xi(0)} for the agents such

that
N∑
i=1

∇fi(xi(0)) = 0. In [21], a novel continuous-time

distributed optimization algorithm, based on private (nonuni-
form) gradient gains, was proposed for convex functions with
quadratic growth, and achieves convergence in finite time.
A finite-time tracking and consensus-based algorithm was
recently proposed in [16], which again achieves convergence
in finite time under a time-invariant communication topology.
Prior work on multi-agent consensus problems has consid-
ered finite- and fixed-time consensus for static topology [22],
[23], [24] as well as time-varying topology [25], [26], [27].

In this paper, we consider a general class of nonlinear
convex objective function, satisfying the assumption that the
team objective is strongly convex, and design a distributed
algorithm to compute the optimal solution of (1) when the
underlying communication topology is time-varying. To the
best of our knowledge, distributed optimization procedures
with fixed-time convergence have not been addressed in the



literature. The authors in [28] consider the distributed opti-
mization problem under the assumption that the individual
objective functions belong to a class of quadratic functions.
We do not make any such assumption on the objective
functions. The authors in [29] propose a fixed-time stable
distributed optimization algorithm under the assumption of
strong convexity of each local objective function. We relax
this assumption in this paper, and require that only the
team objective function is strongly convex. The proposed
procedure is a distributed tracking and consensus-based
algorithm, where both average consensus and tracking are
achieved in fixed time. Assumption such as strong convexity
of the individual objective functions is also relaxed, and
thus the proposed algorithm generalizes to a broader class
of distributed optimization problems.

Under the assumption of connectivity being maintained
at all times, we show that fixed-time convergence can be
guaranteed even when the communication topology varies
with time. This aspect helps tackle the scenarios when
the environmental/operational conditions lead to changes in
the communication topology of the network of the nodes.
Previous results on finite- or fixed-time consensus are special
cases of the proposed method in this paper, which in addition
to achieving fixed-time average consensus, also derives this
average value to the optimal solution of the team objective
function. The simulation results illustrate that the proposed
method gives similar convergence performance as predicted
by theory even when simple discretization schemes are
implemented, and hence, can be used in practice. The proofs
are omitted in this paper, and are available in an extended
version available online [30].

The rest of the paper is organized as follows: Section II
presents some definitions and lemmas that are useful for
designing the fixed-time distributed optimization protocol
described in Section III. The protocol is then validated on
relevant example scenarios in Section IV. We then conclude
our discussion with directions for future work in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

We use R to denote the set of real numbers and R+

to denote non-negative real numbers. Given a function f :
Rd → R, its gradient and its Hessian at some point x ∈ Rd
are denoted by ∇f(x) and ∇2f(x). Number of agents or
nodes is denoted by N . Given x ∈ Rd, ‖x‖ denotes the
2-norm of x. G(·) = (A(·),V) represents an undirected
graph with the adjacency matrix A(t) = [aij(t)] ∈ RN×N ,
aij ∈ {0, 1} and the set of nodes V = {1, 2, · · · , N},
where A(t) can vary with time t. The set of 1-hop neighbors
of node i ∈ V(t) is represented by Ni(t), i.e., Ni(t) =
{j ∈ V | aij(t) = 1}. The second smallest eigenvalue of a
matrix is denoted by λ2(·). Finally, we define the function
signµ : Rd → Rd as signµ(x) = x‖x‖µ−1, for µ > 0 and
sign(x) , sign0(x).

A. Problem statement

Consider the system consisting of N nodes with graph
structure G(t) = (A(t),V) specifying the communication

links between the nodes for t ≥ 0. The objective is to find
x∗ ∈ Rd that solves

min
x1,x2.··· ,xN

N∑
i=1

fi(xi),

s.t. x1 = x2 = · · · = xN .

(2)

In this work, we assume that the minimizer x∗ = x∗1 =
x∗2 = · · · = x∗N for (2) exists and is unique. In contrast
to prior work (e.g. [15], [20], [28]), we do not require the
private objective functions fi to be strongly convex, or of a
particular functional form. Furthermore, in contrast to [20],
where the initial conditions {xi(0)} are required to satisfy
ZGS condition, i.e.,

∑
i∇fi(xi) = 0, we do not impose

any such restrictions. In other words, we show fixed-time
convergence for arbitrary initial conditions. We make the
following assumptions.

Assumption 1. The communication topology between the
agents at any time instant t is connected and undirected,
i.e., the underlying graph G(t) = (A(t),V) is connected and
A(t) is a symmetric matrix for all t ≥ 0.

Assumption 2. Functions fi are convex, twice differentiable
and the Hessian ∇2F (x) =

∑N
i=1∇2fi(x) � kI , where

k > 0, for all x ∈ Rd.

Assumption 3. Each node i receives xj ,∇fj(xj) from each
of its neighboring nodes j ∈ Ni.

Remark 1. Assumption 2 states that the team objective
function F (·) is strongly-convex with modulus k, and can
be easily satisfied even if just one of the objective functions
is strongly convex. Assumption 2 also implies that x = x∗ is
a minimizer if and only if it satisfies

∑n
i=1∇fi(x∗) = 0.

Let xi ∈ Rd represent the state of agent i. We model agent
i as a first-order integrator system, given by:

ẋi = ui, (3)

where ui ∈ Rd can be regarded as a control input, that
depends upon the states of the agent i, and the states of
the neighboring agents j1, j2, · · · , jl ∈ Ni. The control
input ui maybe discontinuous, and thus, the solution of (3)
are understood in the sense of Filippov [31]. The problem
statement is formally given as follows.

Problem 1. Design ui for each agent i ∈ V , such that
x1 = x2 = · · · = xN = x∗ is achieved for (3) within
a specified fixed time 0 < T < ∞, for any initial condition
{x1(0), x2(0), · · · , xN (0)}, where x∗ is the minimizer of the
team objective function F =

∑
i fi in (1), i.e., xi(t) = x∗ is

achieved for all i ∈ V , for t ≥ T .

B. Overview of FxTS

In this section, we present relevant definitions and results
on FxTS. Consider the system:

ẋ(t) = f(x(t)), (4)

where x ∈ Rd, f : Rd → Rd and f(0) = 0. Assume
that the solution of (4) exists and is unique. As defined in



[17], the origin is said to be an FTS equilibrium of (4) if
it is Lyapunov stable and finite-time convergent, i.e., for all
x(0) ∈ D \ {0}, where D is some open neighborhood of
the origin, limt→T (x(0)) x(t) = 0, where T (x(0)) <∞. The
authors in [18] presented the following result for fixed-time
stability, where the time of convergence does not depend
upon the initial condition, i.e., the settling-time function T
does not depend on the initial condition x(0).

Lemma 1 ([18]). Suppose there exists a positive definite
continuously differentiable function V : Rd → R for system
(4) such that V̇ (x(t)) ≤ −aV (x(t))p−bV (x(t))q with a, b >
0, 0 < p < 1 and q > 1. Then, the origin of (4) is FxTS, i.e.,
x(t) = 0 for all t ≥ T , where the settling time T satisfies
T ≤ 1

a(1−p) + 1
b(q−1) .

III. MAIN RESULT

Our approach to fixed-time multi-agent distributed op-
timization is based on first designing a centralized fixed-
time protocol that relies upon global information. Then,
the quantities in the centralized protocol are estimated in
a distributed manner. In summary, the algorithm proceeds
by first estimating global quantities (g∗ as defined in (6))
required for the centralized protocol, then driving the agents
to reach consensus (xi(t) = x̄(t) for all i ∈ V), and finally
driving the common trajectory x̄(t) to the optimal point x∗,
all within a fixed time T . Recall that agents are said to
have reached consensus on states {xi} if xi = xj for all
i, j ∈ V . To this end, we define first a novel centralized
fixed-time protocol in the following theorem. Note that in
the centralized setting, the states of all the agents are driven
by the same input g∗ and are initialized to the same starting
point. In a distributed setting, this behavior translates to
agents having reached consensus and subsequently being
driven by a common input (see Remark 2).

Theorem 1 (Centralized fixed-time protocol). Suppose the
dynamics of each agent i ∈ V in the network is given by

ẋi = g∗, and xi(0) = xj(0) for all i, j ∈ V, (5)

where g∗ is based on global (centralized) information as
follows:

g∗ =−

(
N∑
i=1

∇fi+signl1
(

N∑
i=1

∇fi(x)

)

+signl2
(

N∑
i=1

∇fi(x)

))
(6)

where l1 > 1 and 0 < l2 < 1, and xi(t) = x(t) for each
i ∈ V , for all t ≥ 0. Then the trajectories of all agents
converge to the optimal point x∗, i.e., the minimizer of the
team objective function (2) in a fixed time T̄ > 0.

The proof is based on choosing a Lyapunov candidate
V = 1

2 (
∑N
i=1∇fi(x))T (

∑N
i=1∇fi(x)), and showing that

its time derivatives along the closed-loop trajectories satisfy
conditions of Lemma 1.

Remark 2. Theorem 1 represents a centralized protocol
for convex optimization of team objective functions. Here,
the agents are already in consensus and have access to

global information
N∑
i=1

∇fi(x). In the distributed setting,

agents only have access to their local information, as well
as ∇fj(xj) for all j ∈ Ni(t), and will not be in consensus
in the beginning. Below we propose schemes for estimation
of global quantities that achieve consensus in fixed time.

For each agent i ∈ V , define gi(t) as:

gi(t) = −
(
θi(t) + signl1(θi(t)) + signl2(θi(t))

)
, (7)

where gi denotes agent i’s estimate of g∗ and θi : R+ → Rd
is the estimates of the global quantities, whose dynamics is
given as

θ̇i(t) = ωi(t) + hi(t), (8)

where hi , d
dt∇fi(xi(t)). The input ω : R+ → Rd, defined

as

ωi = p
∑
j∈Ni

(
sign(θj−θi) + γsignν1(θj−θi) + δsignν2(θj−θi)

)
,

(9)

where p, γ, δ > 0, and 0 < ν2 < 1 < ν1, helps achieve
consensus over the quantities θi, as shown below. Let θi(t) =
[θi1(t), θi2(t), . . . , θid(t)]

T . Note that {θi} are updated in
a distributed manner.

Assume that ‖hi − hj‖ ≤ ρ for all t ≥ 0, for some ρ >
0. Although the assumption is somewhat restrictive, it can
be easily satisfied if the graph is connected for all time t,
the gradients and their partial derivatives are bounded. Many
common objective functions, such as quadratic cost functions
satisfy this assumption. Under this assumption, we can state
the following results.
Lemma 2. Let ‖hi(t) − hj(t)‖ ≤ ρ for some ρ > 0 and
all t > 0, and the control gain p in (9) satisfies p > N−1

2 ρ;
then there exists a fixed-time T1 > 0, such that for each

agent i ∈ V , θi(t) =
1

N

N∑
j=1

θj(t) for all t ≥ T1.

Define θji , θj − θi, and the mean of θi’s by θc ,
1

N

N∑
j=1

θj . The difference between an agent i’s state θi and

the mean θc of all agents’ states is denote by θ̃i , θi − θc.
Similarly, θ̃ji represents the difference

(
θ̃j − θ̃i

)
.The proof

is based on choosing a Lyapunov candidate V =
1

2

N∑
i=1

θ̃Ti θ̃i,

and showing that its time derivative along the trajectories of
θi satisfy conditions of Lemma 1.

Theorem 2 (Fixed-time parameter estimation). Let
ωi(0) = 0d for each i ∈ V , i.e., agents initialize their local
states at origin, and the control gain p in (9) is sufficiently
large, more precisely, p > N−1

2 ρ. Then there exists a fixed-
time 0 < T1 < ∞ such that gi(t) = gj(t) for all i, j ∈ V
and t ≥ T1.



Remark 3. Theorem 2 states that if the control gain p
is sufficiently large, then the agents estimate the global

information
N∑
i=1

∇fi(xi) in a distributed manner. Theorem

2 only guarantees that gi(t) = gj(t) for all i, j ∈ V and
t ≥ T1. However, in order to employ the centralized fixed-
time protocol, agents must additionally reach consensus in
their states {xi}, so that gi(t) maps to g∗ for each agent
i ∈ V .

In order to achieve consensus and optimal tracking, we
propose the following update rule for each agent i ∈ V in
the network:

ui = ũi + gi, (10)

where gi is as described in (7), and ũi is defined as locally
averaged signed differences:

ũi = q
∑
j∈Ni

(
sign(xj − xi) + αsignµ1(xj − xi)

+ βsignµ2(xj − xi)
)
, (11)

where q, α, β > 0, µ1 > 1 and 0 < µ2 < 1. The
following results establish that the state update rule for each
agent proposed in (10) ensures that the agents reach global
consensus and optimality in fixed-time.

Theorem 3 (Fixed-time consensus). Under the effect of
update law ui (10) with ũi defined as in (11), and gi(t) =
gj(t) for all t ≥ T1 and i, j ∈ V , the closed-loop trajectories
of (3) converge to a common point x̄ for all i ∈ V in a fixed
time T2, i.e., xi(t) = x̄(t) for all t ≥ T1 + T2.

Finally, the following corollary establishes that the agents
track optimal point in a fixed-time.

Corollary 1 (Fixed-time distributed optimization). Let
each agent i ∈ V in the network be driven by the control
input ui (10). Then there exists T3 <∞ such that the agents
track the minimizer of the team objective function within fixed
time T = T1 + T2 + T3 .

There may exist some communication link failures or
additions among agents in a network, which results in a time-
varying communication topology. We model the underlying
graph G(t) = (A(t),V) through a switching signal χ :
R+ → Θ as G(t) = Gχ(t), where Θ is a finite set consisting
of index numbers associated to specific adjacency matrices
that satisfy Assumption 1.

Corollary 2 (Time-varying topology). Corollary 1 contin-
ues to hold even if communication topology switches among
Θ for the multi-agent system described in (3).

The proof follows by defining λ∗2 as the minimum of
the second smallest eigenvalues of graph Laplacians of the
associated adjacency matrices, i.e., λ∗2 = minλ2(LA(t)) and
noting that λ∗2 > 0.

The overall fixed-time distributed optimization protocol
is described in Algorithm 1. Note that the total time of
convergence T̄ = T1 + T2 + T3 depends upon the design

parameters and is inversely proportional to p, q, α, β, γ, δ.
Hence, for a given user-defined time budget T , one can
choose large values of these parameters so that T̄ ≤ T , and
hence, convergence can be achieved within user-defined time
T .

Algorithm 1 Fixed-time distributed optimization algorithm.
1: procedure FXTS DIST OPT((A,V), f(·))
2: For each agent i ∈ V:
3: FxTS Parameter Estimation
4: while t < T1, do
5: Simulate (8) using control law (9)
6: end while
7: FxTS Consensus
8: while t < T1 + T2 do
9: Simulate (3) using control law (10)

10: Simulate (8) using control law (9)
11: end while
12: FxTS Optimal Tracking
13: while t < T1 + T2 + T3 do
14: Continue simulating (3) using control law (10)

with gi(t) = g∗(t)
15: end while
16: return x∗

17: end procedure

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples demonstrat-
ing the efficacy of the proposed method. We use semilog-
scale to clearly show the variation near the origin, while we
show the linear-scale plot in the inset of each figure. Simu-
lation parameters in Theorems 1-3 can be chosen arbitrarily
as long as the respective conditions are satisfied. We execute
the computation using MATLAB R2018a on a desktop with
a 32GB DDR3 RAM and an Intel Xeon E3-1245 processor
(3.4 GHz). It should be noted that MATLAB code used for
implementations is not fully optimized (eg. loop-based im-
plementation is used over matrix manipulation), however, our
approach still highlights accelerated convergence behavior in
wall-clock time.

A. Example 1: Distributed Optimization with Heterogeneous
Convex Functions and Time-Varying Topology

We present a case study where multiple agents aim to min-
imize the sum of heterogeneous private functions in fixed-
time. A graph consisting of 101 nodes is considered with the
local and private objective functions fi(xi) described by:

fi(xi) =
1

2
(xi − i)2 +

1

4
(xi − i)4, (12)

so that each fi is convex for i ∈ {1, 2, · · · , 101}. It can
be easily shown that x∗ = N+1

2 = 51. The communication
topology switches randomly between the line, ring and star-
topologies every 2.5s. For simplicity, we use µ1 = l1 = ν1 =
1.2, µ2 = l2 = ν2 = 0.8, q = p = 1010, α = γ = 10 and
β = δ = 10 in (11), (6) and (9). With these parameters, we
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Fig. 1. Example 1 - The gradient of the objective function
∑
i∇fi(xi)

with time for various initial conditions xi(0) and θi(0).

obtain that T1 ≤ 0.15, T2 ≤ 0.15 and T3 = T̄ ≤ 10.02,
which implies final time of convergence is Tc ≤ T1 + T2 +
T3 = 10.32.

Figure 1 shows the variation of
∑
i∇fi(xi) with time

for various initial conditions xi(0) and θi(0). For various
initial conditions, ∇F (x) drops to the value of 1e−6 within
Tc units. Figure 2 plots the maximum maxi(|xi(t) − x∗|)
with time and shows the convergence of the individual xi
to the optimal point x∗ = 51 well within Tc units. Figure 3
plots the sum of the gradients for various exponents µ1, µ2.
It can be seen that the rate of convergence increases as µ1

increases, and µ2 decreases.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10
-10

10
-5

10
0

Fig. 2. Example 1 - Individual states xi(t) with time. The states converge
to the optimal point x∗.

B. Example 2: Distributed Support Vector Machine

Consider the following linear Support Vector Machine
(SVM) example, where functions fi are given as:

fi(xi) =
1

2
‖xi‖2 +

m∑
j=1

max{1− lijxTi zij , 0}. (13)

Here xi, zij ∈ R2, lij ∈ {−1, 1} represent separating hyper-
plane parameters of the ith agent, data points allocated to ith

agent and corresponding labels, respectively.The objective is
to compute the separating hyperplane xi that separates zij on
the basis of their labels, i.e., to find xi such that xTi zij < 0

0.5 1 1.5 2

10
-5

10
0

Fig. 3. Example 1 - The gradient of the objective function
∑
i∇fi(xi)

with time for various values of µ1 ∈ [1.05 , 1.5], µ2 ∈ [0.5 , 0.95]. The
value of µ1 increases and that of µ2 decreases from blue to red.

if lij = −1 and xTi zij > 0 if lij = 1. 1 The vectors
zij are chosen from a random distribution around the line
x = y, so that the solution, i.e., the separating hyperplane,
to the minimization problem min

∑
i fi(xi) is the vector

[1, −1]. In this case, we consider a network consisting of
5 nodes connected in a line graph with m = 100 randomly
distributed points per agent. Figure 4 shows the distribution
of zij symmetrically around the line x = y.

For this case, the parameters were set to µ1 = l1 =
ν1 = 1.2, µ2 = l2 = ν2 = 0.8, q = p = 50, α = γ =
β = 1, δ = 10. With these parameter values, we obtain that
T1, T2 ≤ 0.3 and T3 = T̄ ≤ 10.02, which implies final time
of convergence satisfies Tc ≤ T1 + T2 + T3 = 10.62 units.
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Fig. 4. Distribution of points zij around the line x = y (red dotted line).
Blue and red stars denote the points corresponding to lij = −1 and lij = 1,
respectively.

Figure 5 illustrates the variation of ∇F (x) =
∑
i∇fi(x).

Figure 6 plots the convergence behavior of the state error
xi − x∗. It is clear from the figures that the convergence of
the proposed algorithm is superlinear, and that it achieves
convergence (up to discretization precision) in a fixed time
independent of the initial conditions.

V. CONCLUSIONS

In this paper, we presented a scheme to solve a distributed
convex optimization problem for continuous time multi-agent

1Since the proposed method assumes that the functions fi are twice
differentiable, we use function g(0, a) = 1

µ
log(1+eµa) with large values

of µ to smoothly approximate max{0, a}.
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Fig. 5. The gradient of the objective function ∇F (x) =
∑
i∇fi(xi)

with time.
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Fig. 6. Individual states xi(t) with time. The states converge to the optimal
point x∗.

systems with fixed-time convergence guarantees. We showed
that even when the communication topology of the network
varies with time, consensus on the state values as well as on
the gradient the function can be achieved in a fixed time.
Future work involves investigating methods of distributed
optimization with fixed-time convergence guarantees with
convex constraints, and incorporating private (non-uniform)
gains between agents in the distributed protocol.
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